首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incompressibility of the lipid bilayer keeps the total surface area of the red cell membrane constant. Local conservation of membrane surface area requires that each surface element of the membrane skeleton keeps its area when its aspect ratio is changed. A change in area would require a flow of lipids past the intrinsic proteins to which the skeleton is anchored. in fast red cell deformations, there is no time for such a flow. Consequently, the bilayer provides for local area conservation. In quasistatic deformations, the extent of local change in surface area is the smaller the larger the isotropic modulus of the skeleton in relation to the shear modulus. Estimates indicate: (a) the velocity of relative flow between lipid and intrinsic proteins is proportional to the gradient in normal tension within the skeleton and inversely proportional to the viscosity of the bilayer; (b) lateral diffusion of lipids is much slower than this flow; (c) membrane tanktreading at frequencies prevailing in vivo as well as the release of a membrane tongue from a micropipette are fast deformations; and (d) the slow phase in micropipette aspiration may be dominated by a local change in skeleton surface.  相似文献   

2.
Stabilization of the lipid bilayer membrane in red blood cells by its association with an underlying membrane-associated cytoskeleton has long been recognized as critical for proper red blood cell function. One of the principal connections between skeleton and bilayer is via linkages between band 3, the integral membrane protein that transports anions across the cell surface, and membrane skeletal elements including ankyrin, adducin, spectrin, and the junctional complex of the skeleton. Here, we use membrane tether formation coupled with fluorescent labeling of membrane components to examine the importance of band 3 in stabilizing the bilayer-skeletal association. In membranes from a patient deficient in band 3, the energy associated with the bilayer skeleton is approximately zero, whereas when band 3 is immobilized by ligation with the monoclonal antibody R10, the energy of association approximately doubles. Fluorescence images of tethers reveal that ∼40% of the band 3 on the normal cell surface can be pulled into the tether, confirming a lateral segregation of membrane components during tether formation. These results validate a critical role for band 3 in stabilizing the bilayer-skeletal association in red cells.  相似文献   

3.
4.
The membrane skeleton, a protein lattice at the internal side of the red cell membrane, is principally composed of spectrin, actin and proteins 4.1 and 4.9. We have examined negatively stained red cell ghosts and demonstrated, on an ultrastructural level, a separation of the lipid bilayer from the membrane skeleton during echinocytic transformation. The electron micrographs of discoidal red cell ghosts suspended in hypotonic buffer revealed a filamentous reticulum that uniformly laminated the entire submembrane region. transformation of the discoidal ghosts into echinocytic form, as induced by incubation in isotonic buffer, resulted in a disruption of skeletal continuity underlying the surface contour of the membrane spicule. The submembrane reticulum extended into the base and the neck of the spiny processes of the crenated ghosts but was absent at the tip of these projections. In addition, membrane vesicles without a submembrane reticulum were detected either attached to the tips of the spicules or released into the supernatant from the echinocytic ghosts. Protein analysis revealed that the released vesicles were enriched in bands 3, 4.1 and 7 and contained very little of the membrane skeletal proteins, spectrin and actin. The data indicate that during echinocyte formation, parts of the lipid bilayer physically separate from the membrane skeleton, leading to a formation of skeleton-poor lipid vesicles.  相似文献   

5.
The mechanical properties of erythrocyte membrane composed of a membrane bilayer and membrane skeleton are considered. Two membrane models are described: the model of free boundaries (MFB) and the model of immobilized boundaries (MIB). In MFB, the skeleton is assumed to be attached to the bilayer at a finite number of points, whereas MIB allows the interaction of each spectrin filament with the bilayer along its whole length. For MFB an estimate was made of the mechanical strain generated in the membrane by sucking erythrocytes into a micropipette. The existence of the deformation threshold is demonstrated, below which no mechanical strain, except that of bending, appears in the membrane. Thus only deformations exceeding this threshold result in strain. The relationship between the applied tension and the height of erythrocyte "tongue" sucked into a micropipette was determined. The MIB characteristics correspond to the model of Evans: strains in the membrane are generated at any deformation, however small, i.e. the threshold is equal to zero. A basic feature of this model is quite a different distribution of the skeleton deformations in the membrane. A comparison of the theoretical models and experimental data demonstrated the possibility of either MFB or MIB occurring, depending on the characteristic measurement time.  相似文献   

6.
The plasma membrane serves as a barrier to limit the exit and entry of components into and out of the cell, offering protection from the external environment. Communication between the cell and the external environment is mediated by multiple signaling pathways. While the plasma membrane was historically viewed as a lipid bilayer with freely diffusing proteins, the last decade has shown that the lipids and proteins in the plasma membrane are organized in a non-random manner, and that this organization can direct and modify various signaling pathways in the cell. In this review, we qualitatively discuss the ways that membrane domains can affect cell signaling. We then focus on how membrane domains can affect a specific signaling pathway – the G protein–phospholipase Cβ pathway and show how membrane domains can play an active role in directing or redirecting G protein signals.  相似文献   

7.
The association between the lipid bilayer and the membrane skeleton is important to cell function. In red blood cells, defects in this association can lead to various forms of hemolytic anemia. Although proteins involved in this association have been well characterized biochemically, the physical strength of this association is only beginning to be studied. Formation of a small cylindrical strand of membrane material (tether) from the membrane involves separation of the lipid bilayer from the membrane skeleton. By measuring the force required to form a tether, and knowing the contribution to the force due to the deformation of a lipid bilayer, it is possible to calculate the additional contribution to the work of tether formation due to the separation of membrane skeleton from the lipid bilayer. In the present study, we measured the tethering force during tether formation using a microcantilever (a thin, flexible glass fiber) as a force transducer. Numerical calculations of the red cell contour were performed to examine how the shape of the contour affects the calculation of tether radius, and subsequently separation work per unit area W(sk) and bending stiffness k(c). At high aspiration pressure and small external force, the red cell contour can be accurately modeled as a sphere, but at low aspiration pressure and large external force, the contour deviates from a sphere and may affect the calculation. Based on an energy balance and numerical calculations of the cell contour, values of the membrane bending stiffness k(c) = 2.0 x 10(-19) Nm and the separation work per unit area W(sk) = 0.06 mJ/m2 were obtained.  相似文献   

8.
Single-particle tracking: effects of corrals.   总被引:5,自引:2,他引:3  
Structural proteins of the membrane skeleton are thought to form "corrals" at the membrane surface, and these corrals may restrict lateral diffusion of membrane proteins. Recent experimental developments in single-particle tracking and laser trapping make it possible to examine the corral model in detail. Techniques to interpret these experiments are presented. First, escape times for a diffusing particle in a corral are obtained from Monte Carlo calculations and analytical solutions for various corral sizes, shapes, and escape probabilities, and reduced to a common curve. Second, the identification of corrals in tracking experiments is considered. The simplest way to identify corrals is by sight. If the walls are impermeable enough, a trajectory fills the corral before the diffusing particle escapes. The fraction of distinct sites visited before escape is calculated for corrals of various sizes, shapes, and escape probabilities, and reduced to a common curve. This fraction is also a measure of the probability that the diffusing species will react with another species in the corral before escaping. Finally, the effect of the sampling interval on the measurement of the short-range diffusion coefficient is examined.  相似文献   

9.
《The Journal of cell biology》1985,101(5):1884-1896
In this paper we show that a membrane skeleton associated with the plasma membrane of the unicellular organism Euglena consists of approximately 40 individual S-shaped strips that overlap along their lateral margins. The region of strip overlap is occupied by a set of microtubule-associated bridges and microtubule-independent bridges. Both cell form and plasma membrane organization are dependent on the integrity of this membrane skeleton. Removal of the membrane skeleton with a low-molar base results in loss of membrane form and randomization of the paracrystalline membrane interior characteristic of untreated cells. Conversely, removal of the plasma membrane and residual cytoplasm with lithium 3,5-diiodosalicylate/Nonidet P-40 yields cell ghosts that retain the form of the original cell but consist only of the membrane skeleton. Two major polypeptides of 86 and 80 KD persist in the skeleton and two other major proteins of 68 and 39 kD are associated with the plasma membrane fraction. None of these components appears to be the same as the major polypeptides (spectrins, band 3) of the erythrocyte ghost, the other cell system in which a well- defined peripheral membrane skeleton has been identified. We suggest that the articulating strips of euglenoids are not only the basic unit of cell and surface form, but that they are also positioned to mediate or accommodate surface movements by sliding, and to permit surface replication by intussusception.  相似文献   

10.
The natural biconcave shape of red blood cells (RBC) may be altered by injury or environmental conditions into a spiculated form (echinocyte). An analysis is presented of the effect of such a transformation on the resistance of RBC to entry into capillary sized cylindrical tubes. The analysis accounts for the elasticity of the membrane skeleton in dilation and shear, and the local and nonlocal resistance of the bilayer to bending, the latter corresponding to different area strains in the two leaflets of the bilayer. The shape transformation is assumed to be driven by the equilibrium area difference (A0, the difference between the equilibrium areas of the bilayer leaflets), which also affects the energy of deformation. The cell shape is approximated by a parametric model. Shape parameters, skeleton shear deformation, and the skeleton density of deformed membrane relative to the skeleton density of undeformed membrane are obtained by minimization of the corresponding thermodynamic potential. Experimentally, A0 is modified and the corresponding discocyte–echinocyte shape transition obtained by high-pressure aspiration into a narrow pipette, and the deformability of the resulting echinocyte is examined by whole cell aspiration into a larger pipette. We conclude that the deformability of the echinocyte can be accounted for by the mechanical behavior of the normal RBC membrane, where the equilibrium area difference A0 is modified.  相似文献   

11.
The human erythrocyte membrane skeleton may be an ionic gel   总被引:3,自引:0,他引:3  
In the first paper in this series (Stokke et al. Eur Biophys J 1986, 13:203-218) we developed the general theory of the mechanochemical properties and the elastic free energy of the protein gel--lipid bilayer membrane model. Here we report on an extensive numerical analysis of the human erythrocyte shapes and shape transformations predicted by this new cell membrane model. We have calculated the total elastic free energy of deformation of four different cell shape classes: disc-shaped cells, cup-shaped cells, crenated cells, and cells with membrane invaginations. We find that which of these shape classes is favoured depends strongly on the spectrin gel osmotic tension, IIGu, and the surface tensions, IIEu and IIPu, of the extracellular and protoplasmic halves of the membrane lipid bilayer, respectively. For constant ratio IIEu/IIPu greater than O large negative or positive values of IIGu favour respectively the crenated and invaginated cell shape classes. For small absolute values of IIGu, IIEu, and IIPu, biconcave or cup-shaped cells are the stable ones. Our numerical analysis shows that the higher the membrane skeleton compressibility is, the smaller are the values of IIGu needed to induce cell shape transformation. We find that the stable and metastable shapes of discocytes and stomatocytes generally depend both on the shape of the stressfree membrane skeleton and the membrane skeleton compressibility.  相似文献   

12.
Energetics of inclusion-induced bilayer deformations.   总被引:3,自引:2,他引:1       下载免费PDF全文
The material properties of lipid bilayers can affect membrane protein function whenever conformational changes in the membrane-spanning proteins perturb the structure of the surrounding bilayer. This coupling between the protein and the bilayer arises from hydrophobic interactions between the protein and the bilayer. We analyze the free energy cost associated with a hydrophobic mismatch, i.e., a difference between the length of the protein's hydrophobic exterior surface and the average thickness of the bilayer's hydrophobic core, using a (liquid-crystal) elastic model of bilayer deformations. The free energy of the deformation is described as the sum of three contributions: compression-expansion, splay-distortion, and surface tension. When evaluating the interdependence among the energy components, one modulus renormalizes the other: e.g., a change in the compression-expansion modulus affects not only the compression-expansion energy but also the splay-distortion energy. The surface tension contribution always is negligible in thin solvent-free bilayers. When evaluating the energy per unit distance (away from the inclusion), the splay-distortion component dominates close to the bilayer/inclusion boundary, whereas the compression-expansion component is more prominent further away from the boundary. Despite this complexity, the bilayer deformation energy in many cases can be described by a linear spring formalism. The results show that, for a protein embedded in a membrane with an initial hydrophobic mismatch of only 1 A, an increase in hydrophobic mismatch to 1.3 A can increase the Boltzmann factor (the equilibrium distribution for protein conformation) 10-fold due to the elastic properties of the bilayer.  相似文献   

13.
On the basis of extensive studies of the literature and of own results the present knowledge about the structure of the membrane skeleton of human erythrocytes is summarized and functional and clinical aspects are described. The spectrins are the centre of interest. Their interconnections, spatial arrangement and association with other components of the membrane are explained in greater detail. With regard to the membrane skeleton questions of erythrocyte shape, membrane integrity, phospholipid asymmetry, distribution of transmembrane proteins and cell deformation are discussed.  相似文献   

14.
Various structural components of biological membranes are asymmetrically localized in the two surfaces of the membrane bilayer. This asymmetry is absolute for membrane (glyco) proteins, but only a partial asymmetry has been observed for membrane phospholipids. In the red cell membrane, choline-phospholipids are localized mainly in the outer monolayer whereas aminophospholipids are distributed almost exclusively in the inner monolayer. Several evidences are now available to suggest that this distribution of membrane phospholipids in red cells is directly or indirectly maintained by the membrane-associated cytoskeleton (membrane skeleton). This belief is well supported by the previous as well as recent studies carried out in the authors laboratory. Previously, it has been shown that lipid-lipid interactions play no major role in maintaining the transmembrane phospholipid asymmetry in erythrocytes, and that the asymmetry is lost upon covalent crosslinking of the major membrane skeletal protein, spectrin. The recent data presented here further shows that degradation or denaturation of spectrin indices rapid transbilayer movement of membrane phospholipids in the cells which, in turn, leads to more random phospholipid distributions across the membrane. These studies taken together strongly suggest that the skeleton-membrane associations are the major determinants of the transmembrane phospholipid asymmetry in erythrocytes, and that the dissociation of the skeleton from the membrane bilayer probably results in generation of new reorientation sites for phospholipids in the membrane. Communication No 3648 from C.D.R.I., Lucknow.  相似文献   

15.
16.
In epithelial cells, the various components of the membrane skeleton are segregated within specialized subregions of the plasma membrane, thus contributing to the development and stabilization of cell surface polarity. It has previously been shown that, in various Drosophila epithelia, the membrane skeleton components ankyrin and alphabeta-spectrin reside at the lateral surface, whereas alphabeta(H)-spectrin is restricted to the apical domain. By use of confocal immunofluorescence microscopy, the present study characterizes the membrane skeleton of epithelial cells in the posterior midgut, leading to a number of unexpected results. First, ankyrin and alphabeta-spectrin are not detected on the entire lateral surface but appear to be restricted to the apicolateral area, codistributing with fasciclin III at smooth septate junctions. The presumptive ankyrin-binding proteins neuroglian and Na(+),K(+)-ATPase, however, do not colocalize with ankyrin. Second, alphabeta(H)-spectrin is enriched at the apical domain but is also present in lower amounts on the entire lateral surface, colocalizing apicolaterally with ankyrin/alphabeta-spectrin. Finally, despite the absence of zonulae adherentes, F-actin, beta(H)-spectrin, and nonmuscle myosin-II are enriched in the midlateral region. Thus, the model established for the organization of the membrane skeleton in Drosophila epithelia does not hold for the posterior midgut, and there is quite some variability between the different epithelia with respect to the organization of the membrane skeleton.  相似文献   

17.
The red blood cell membrane is a complex material that exhibits both solid- and liquidlike behavior. It is distinguished from a simple lipid bilayer capsule by its mechanical properties, particularly its shear viscoelastic behavior and by the long-range mobility of integral proteins on the membrane surface. Subject to sufficiently large extension, the membrane loses its shear rigidity and flows as a two-dimensional fluid. These experiments examine the change in integral protein mobility that accompanies the mechanical phenomenon of extensional failure and liquidlike flow. A flow channel apparatus is used to create red cell tethers, hollow cylinders of greatly deformed membrane, up to 36-microns long. The diffusion of proteins within the surface of the membrane is measured by the technique of fluorescence redistribution after photobleaching (FRAP). Integral membrane proteins are labeled directly with a fluorescein dye (DTAF). Mobility in normal membrane is measured by photobleaching half of the cell and measuring the rate of fluorescence recovery. Protein mobility in tether membrane is calculated from the fluorescence recovery rate after the entire tether has been bleached. Fluorescence recovery rates for normal membrane indicate that more than half the labeled proteins are mobile with a diffusion coefficient of approximately 4 x 10(-11) cm2/s, in agreement with results from other studies. The diffusion coefficient for proteins in tether membrane is greater than 1.5 x 10(-9) cm2/s. This dramatic increase in diffusion coefficient indicates that extensional failure involves the uncoupling of the lipid bilayer from the membrane skeleton.  相似文献   

18.
Though the cytomechanics of spectrin have been explored only for erythrocytes, it is thought that the spectrin skeleton acts universally to support the otherwise mechanically vulnerable cell surface bilayer. Evidence for this role is beginning to accumulate and is reviewed here. Compared to that for erythrocytes, cells whose simplicity facilitates biophysical approaches, the evidence is indirect. One way that membrane skeleton/bilayer interactions have been probed is via the behavior of mechanosusceptible ion channels - channel whose gating is perturbed by abnormally high bilayer tension. These initially unresponsive channels become progressively more mechanoresponsive as stretch and chemical reagents damage the membrane skeleton. The straightforward implication is that the intact membrane skeleton is mechanoprotective. In non-erythroid cells there is continual trafficking of bilayer to and from the plasma membrane. Some of the traffic involves spectrin-lined vacuolar membrane. Several lines of evidence suggest that when neurons elongate and remodel their neurites, membrane skeleton-based mechanoprotection allows the dynamic vacuoles and the plasma membrane to participate in mechanosensitive surface area expansion and retrieval.  相似文献   

19.
Ward AB  Guvench O  Hills RD 《Proteins》2012,80(9):2178-2190
Coarse-grained (CG) modeling has proven effective for simulating lipid bilayer dynamics on scales of biological interest. Modeling the dynamics of flexible membrane proteins within the bilayer, on the other hand, poses a considerable challenge due to the complexity of the folding or conformational landscape. In the present work, the multiscale coarse-graining method is applied to atomistic peptide-lipid "soup" simulations to develop a general set of CG protein-lipid interaction potentials. The reduced model was constructed to be compatible with recent solvent-free CG models developed for protein-protein folding and lipid-lipid model bilayer interactions. The utility of the force field was demonstrated by molecular dynamics simulation of the MsbA ABC transporter in a mixed DOPC/DOPE bilayer. An elastic network was parameterized to restrain the MsbA dimer in its open, closed and hydrolysis intermediate conformations and its impact on domain flexibility was examined. Conformational stability enabled long-time dynamics simulation of MsbA freely diffusing in a 25 nm membrane patch. Three-dimensional density analysis revealed that a shell of weakly bound "annular lipids" solvate the membrane accessible surface of MsbA and its internal substrate-binding chamber. The annular lipid binding modes, along with local perturbations in head group structure, are a function of the orientation of grooves formed between transmembrane helices and may influence the alternating access mechanism of substrate entry and translocation.  相似文献   

20.
The ultrastructure of red cell invasion in malaria infections: a review   总被引:6,自引:0,他引:6  
L H Bannister  A R Dluzewski 《Blood cells》1990,16(2-3):257-92; discussion 293-7
Within the circulation, the invasive stage of Plasmodium is the merozoite, a small elliptical cell. Electron microscopy shows that the merozoite can attach reversibly to erythrocytes by its adhesive coat, then form a close, irreversible contact by its apical end, triggering secretion from membranous vesicles (rhoptries and micronemes) on to the erythrocyte membrane. This causes the erythrocyte membrane to invaginate and the merozoite then becomes enclosed within a cavity lined by interiorized membrane. In uninfected erythrocytes, the surface membrane consists of a lipid bilayer in which lie various integral membrane proteins and glycoproteins, associated at their cytoplasmic ends with a network of other proteins constituting the membrane skeleton. There is much evidence that during invasion the membrane proteins and skeleton are removed from the invaginated membrane. There are also ultrastructural data suggesting that the rhoptries are able to generate membrane-like materials, which are inserted into the erythrocyte membrane to cause its inward expansion. Further expansion may be induced by the liberation of parasite secretions from another set of organelles (microspheres) released after the first stage of invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号