首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract The immunity protein to colicin A protects producing cells from the action of this pore-forming toxin. It is located into the cytoplasmic membrane. This protein has been 'tagged' with an epitope from the colicin A protein for which a monoclonal antibody is available. The fusion protein (named VL1) has been purified after extraction from the membrane in two steps using a chromatofocusing and an immunoadsorbant chromatography. The purified protein has then been reconstituted into lipid vesicles.  相似文献   

2.
Functional domains of colicin A   总被引:16,自引:3,他引:13  
A large number of mutations which introduce deletions in colicin A have been constructed. The partially deleted colicin A proteins were purified and their activity in vivo (on sensitive cells) and in vitro (in planar lipid bilayers) was assayed. The receptor-binding properties of each protein were also analysed. From these results, we suggest that the NH2-terminal region of colicin A (residues 1 to 172) is involved in the translocation step through the outer membrane. The central region of colicin A (residues 173 to 336) contains the receptor-binding domain. The COOH-terminal domain (residues 389 to 592) carries the pore-forming activity.  相似文献   

3.
Partial proteolytic digestion of colicin A with bromelain allowed the isolation of a 20-kd fragment. This fragment has been purified to homogeneity and its molecular properties have been studied. The sequence of the 54 N-terminal amino acid residues has been determined by automated Edman degradation. This sequence is identical to that of the predicted amino acid sequence of the 20-kd C-terminal part of the colicin A polypeptide deduced from the nucleotide sequence of the caa gene. This polypeptide can produce channels in phospholipid planar bilayers of the same size as those formed by colicin A. However, the voltage-dependence for opening and closing was drastically altered in the peptide fragment channels. The latter, in contrast to colicin A channels, remained open over a wide range of voltage. Large negative potentials were required to close the peptide fragment channels although opening took place in the same voltage range as for colicin A ionic pores.  相似文献   

4.
Six different hybrid colicins were constructed by recombining various domains of the two pore-forming colicins A and E1. These hybrid colicins were purified and their properties were studied. All of them were active against sensitive cells, although to varying degrees. From the results, one can conclude that: (1) the binding site of OmpF is located in the N-terminal domain of colicin A; (2) the OmpF, TolB and TolR dependence for translocation is also located in this domain; (3) the TolC dependence for colicin E1 is located in the N-terminal domain of colicin E1; (4) the 183 N-terminal amino acid residues of colicin E1 are sufficient to promote E1AA uptake and thus probably colicin E1 uptake; (5) there is an interaction between the central domain and C-terminal domain of colicin A; (6) the individual functioning of different domains in various hybrids suggests that domain interactions can be reconstituted in hybrids that are fully active, whereas in others that are much less active, non-proper domain interactions may interfere with translocation; (7) there is a specific recognition of the C-terminal domains of colicin A and colicin E1 by their respective immunity proteins.  相似文献   

5.
6.
Summary The gene for the antibacterial peptide colicin B was cloned and transformed into a host background where it was constitutively overexpressed. The purified gene product was biologically active and formed voltage-dependent, ion-conducting channels in planar phospholipid bilayers composed of asolectin. Colicin B channels exhibited two distinct unitary conductance levels, and a slight preference for Na+ over Cl. Kinetic analysis of the voltage-driven opening and closing of colicin channels revealed the existence of at least two conducting states and two nonconducting states of the protein. Both the ion selectivity and the kinetics of colicin B channels were highly dependent on pH. Excess colicin protein was readily removed from the system by perfusing the bilayer, but open channels could be washed out only after they were allowed to close. A monospecific polyclonal antiserum generated against electrophoretically purified colicin B eliminated both the biological and in vitro activity of the protein. Membrane-associated channels, whether open or closed, remained functionally unaffected by the presence of the antiserum. Taken together, our results suggest that the voltage-independent binding of colicin B to the membrane is the rate-limiting step for the formation of ion channels, and that this process is accompanied by a major conformational rearrangement of the protein.  相似文献   

7.
The nucleotide sequences for colicin Ia and colicin Ib structural and immunity genes were determined. The two colicins each consist of 626 amino acid residues. Comparison of the two sequences along their lengths revealed that the two colicins are nearly identical in the N-terminal 426 amino acid residues. The C-terminal 220 amino acid residues of the colicins are only 60% identical, suggesting that this is the region most likely recognized by their cognate immunity proteins. The predicted proteins for the colicin immunity proteins would contain 111 amino acids for the colicin Ia immunity protein and 115 amino acids for the colicin Ib immunity protein. The colicin immunity proteins have no detectable DNA or amino acid homology but do exhibit a conservation of overall hydrophobicity. The colicin immunity genes lie distal to and in opposite orientation to the colicin structural genes. The colicin Ia immunity protein was purified to apparent homogeneity by a combination of isoelectric focusing and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified Ia immunity protein was determined and was found to be in perfect agreement with that predicted from the DNA sequence of its structural gene. The Ia immunity protein is not a processed membrane protein.  相似文献   

8.
We report the overproduction of the immunity protein for the DNase colicin E9 and its characterization both in vivo and in vitro. The genes for colicin immunity proteins are normally co-expressed from Col plasmids with their corresponding colicins. In the context of the enzymatic colicins, the two proteins form a complex, thereby protecting the host bacterium from the antibiotic activity of the colicin. This complex is then released into the medium, whereupon the colicin alone translocates (through the appropriate receptor) into sensitive bacterial strains, resulting in bacterial cell death. The immunity protein for colicin E9 (Im9) has been overproduced in a bacterial host in the absence of its colicin, to enable sufficient material to be isolated for structural studies. As a prelude to such studies, the in-vivo and in-vitro properties of overproduced Im9 were analysed. Electrospray mass spectrometry verified the molecular mass of the purified protein and analytical ultracentrifugation indicated that the native protein approximates a symmetric monomer. Fluorescence-enhancement and gel-filtration experiments show that purified Im9 binds to colicin E9 in a 1:1 molar ratio and that this binding neutralizes the DNase activity of the colicin. These results lay the foundations for a full biophysical and structural characterization of the colicin E9 DNase inhibitor protein, Im9.  相似文献   

9.
Stabilization of Colicin E2 by Bovine Serum Albumin   总被引:10,自引:3,他引:7       下载免费PDF全文
Colicin E2 was partially purified from Escherichia coli W3110. This preparation was remarkably stabilized by bovine serum albumin in a solution at neutral pH, as shown by dilution experiments and tests on heat stability of colicin. One killing unit of colicin E2 was estimated to correspond to one molecule of colicin E2, on the assumption of a molecular weight of 60,000.  相似文献   

10.
Colicin B: mode of action and inhibition by enterochelin   总被引:27,自引:19,他引:8  
Adsorption of colicin B to a sensitive strain of Escherichia coli results in rapid cessation of deoxyribonucleic acid, ribonucleic acid, and protein synthesis. Some classes of mutants insensitive to colicin B hyperexcrete a colicin inhibitor into their growth medium. This inhibitor functions by preventing adsorption of colicin B and does not rescue cells to which colicin has already adsorbed. The inhibitor is insensitive to nucleases, proteolytic enzymes, and lysozyme and is not extracted into organic solvents. The inhibitory material has a low molecular weight, which rules out identification as lipopolysaccharide, although purified lipopolysaccharide has some inhibitory activity. Evidence is presented that the inhibitor is enterochelin, an iron chelator which is the cyclic trimer of 2,3-dihydroxybenzoylserine. Enterochelin does not inhibit colicin M, a colicin that is produced by many strains colicinogenic for colicin B.  相似文献   

11.
Colicins use two envelope multiprotein systems to reach their cellular target in susceptible cells of Escherichia coli : the Tol system for group A colicins and the TonB system for group B colicins. The N-terminal domain of colicins is involved in the translocation step. To determine whether it interacts in vivo with proteins of the translocation system, constructs were designed to produce and export to the cell periplasm the N-terminal domains of colicin E3 (group A) and colicin B (group B). Producing cells became specifically tolerant to entire extracellular colicins of the same group. The periplasmic N-terminal domains therefore compete with entire colicins for proteins of the translocation system and thus interact in situ with these proteins on the inner side of the outer membrane. In vivo cross-linking and co-immunoprecipitation experiments in cells producing the colicin E3 N-terminal domain demonstrated the existence of a 120 kDa complex containing the colicin domain and TolB. After in vitro cross-linking experiments with these two purified proteins, a 120 kDa complex was also obtained. This suggests that the complex obtained in vivo contains exclusively TolB and the colicin E3 domain. The N-terminal domain of a translocation-defective colicin E3 mutant was found to no longer interact with TolB. Hence, this interaction must play an important role in colicin E3 translocation.  相似文献   

12.
The properties of colicin S8 are different for the cytoplasmic, periplasmic and extracellular protein. Interactions with its specific receptors reflect this. Active cell extracts separate into a non-anionic along with an anionic fraction by DEAE-Sephacell chromatography. Previously, we have purified cell-associated colicin S8 as an aggregation of highly related polypeptides; cytoplasmic colicin S8 seems to be post-translationally processed into an aggregation of polypeptides of molecular mass ranging from 45,000 Da to 60,000 Da. We suggest that a conformational change to colicin S8 may occur related to the export process.  相似文献   

13.
Abstract This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma , has been sequenced and the protein isolated and purified. With a deduced molecular size of 29 453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13 890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.  相似文献   

14.
Cloning and characterization of the ColE7 plasmid   总被引:9,自引:0,他引:9  
The 6.2 kb ColE7-K317 plasmid was mapped and the DNA fragments of the colicin E7 operon subcloned into pUC18 and pUC19. The size of the functional colicin E7 operon deduced by subcloning was 2.3 kb. The colicin E7 gene product was purified by carboxymethylcellulose chromatography. Both colicin E7 and E9 were demonstrated to exhibit a non-specific DNAase-type activity by in vitro biological assay. The molecular mass of colicin E7 was 61 kDa, as determined by SDS-PAGE. From DNA sequence data, the estimated sizes of the E7 immunity protein and the E7 lysis protein were 9926 Da and 4847 Da, respectively. Comparison of restriction maps and DNA sequence data suggests that ColE7 and ColE2 are more closely related than other E colicin plasmids.  相似文献   

15.
The biology of colicin M   总被引:4,自引:0,他引:4  
This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma, has been sequenced and the protein isolated and purified. With a deduced molecular size of 29,453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13,890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.  相似文献   

16.
Mode of action of colicin ib: formation of ion-permeable membrane channels   总被引:4,自引:0,他引:4  
Addition of purified colicin Ib to whole Escherichia coli cells or cytoplasmic membrane vesicles inhibits their subsequent ability to generate a membrane potential. In addition, this colicin is shown to bring about a voltage-dependent increase in the conductance of an artificial planar bilayer membrane prepared from soybean phospholipids. This results from the formation of ion-permeable channels. These data provide strong evidence that the depolarization of Escherichia coli cells by this colicin results from an Ib-induced increase in membrane permeability to ions.  相似文献   

17.
An Mr = 16,000 receptor-binding fragment of colicin E1 has been obtained by cyanogen bromide digestion of colicin E1. The purified 16-kDa fragment shows binding properties similar to those of an Mr = 38,000 colicin E1 receptor-binding fragment generated by thermolysin treatment. Treatment of the 38-kDa fragment with cyanogen bromide also yields the 16-kDa fragment. By comparing the NH2-terminal amino acid sequence of the 16-kDa fragment with the known colicin E1 sequence, the receptor-binding fragment can be shown to occupy the central region of the colicin molecule, extending from residue 231 to 370. It is inferred that the 16-kDa fragment binds efficiently to the colicin receptor because it is able to protect sensitive cells against the lethal effects of colicins E1 and E2 and, when pre-adsorbed to the cell, to physically displace colicin E1. Unlike the 38-kDa receptor-binding fragment, the 16-kDa fragment was found to be devoid of channel-forming ability previously shown to be associated with the COOH-terminal region of the colicin E1 polypeptide.  相似文献   

18.
Addition of purified colicin Ib to whole Escherichia coli cells or cytoplasmic membrane vesicles inhibits their subsequent ability to generate a membrane potential. In addition, this colicin is shown to bring about a voltage-dependent increase in the conductance of an artificial planar bilayer membrane prepared from soybean phospholipids. This results from the formation of ion-permeable channels. These data provide strong evidence that the depolarization of Escherichia coli cells by this colicin results from an Ib-induced increase in membrane permeability to ions.  相似文献   

19.
A colicin isolated from a strain of Escherichia coli 0 111:B4:H2 has been purified by a combination of molecular sieve chromatography on Sephadex G-200 and ion-exchange chromatography on CM-Sephadex C50. The protein is homogeneous by the criteria of polyacrylamide gel electrophoresis at pH 4.5, 8.5, and 10.0, by dodecyl sulfate acrylamide gel electrophoresis, and by isoelectric focusing. The colicin has a molecular weight of 69,000, a sedimentation coefficient of 4.2 S, and a frictional ratio of 1.49. Isoelectric focusing indicated a pI of 9.50.  相似文献   

20.
The specific binding of 125 Iodine labelled colicin Ia and Ib to Escherichia coli cell envelopes and partially purified cell walls is demonstrated. Neither partially purified cytoplasmic membranes isolated from a wild type sensitive strain nor envelopes or cell walls prepared from an E. coli mutant known to be defective in the colicin I receptor could bind the colicins. Competition studies suggest that colicins Ia and Ib have a common bacterial receptor which resides in the bacterial cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号