首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously isolated and sequenced murine sorCS1, a type 1 receptor containing a Vps10p-domain and a leucine-rich domain. We now show that human sorCS1 has three isoforms, sorCS1a-c, with completely different cytoplasmic tails and differential expression in tissues. The b tail shows high identity with that of murine sorCS1b, whereas the a and c tails have no reported counterparts. Like the Vps10p-domain receptor family members sortilin and sorLA, sorCS1 is synthesized as a proreceptor that is converted in late Golgi compartments by furin-mediated cleavage. Mature sorCS1 bound its own propeptide with low affinity but none of the ligands previously shown to interact with sortilin and sorLA. In transfected cells, about 10% of sorCS1a was expressed on the cell surface and proved capable of rapid endocytosis in complex with specific antibody, whereas sorCS1b presented a high cell surface expression but essentially no endocytosis, and sorCS1c was intermediate. This is an unusual example of an alternatively spliced single transmembrane receptor with completely different cytoplasmic domains that mediate different trafficking in cells.  相似文献   

2.
We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation.  相似文献   

3.
The single transmembrane receptor sorLA/LR11 contains binding domains typical for the low-density lipoprotein receptors and a VPS10 domain which, in the related receptor sortilin, binds the neuropeptide neurotensin. SorLA is synthesized as a proreceptor which is processed to the mature form by a furin-like propeptidase. Endogenous sorLA and its hydra homologue HAB bind the neuropeptide head activator (HA). Transiently expressed partial sorLA constructs were investigated for ligand binding. We found that HA binds with nanomolar affinity to the VPS10 domain. The sorLA propeptide also bound to the VPS10 domain, whereas the receptor-associated protein RAP interacted both with the class A repeats and the VPS10 domain. The sorLA propeptide inhibited binding of HA to full-length sorLA and to the VPS10 domain. It also interfered with binding of HA to hydra HAB, which is taken as evidence for a highly conserved tertiary structure of the VPS10 domains of this receptor in hydra and mammals. The propeptide inhibited HA-stimulated mitosis and proliferation in the human neuroendocrine cell line BON and the neuronal precursor cell line NT2. We conclude that sorLA is necessary for HA signaling and function.  相似文献   

4.
A Vps10p domain makes up the entire luminal part of Sortilin, and this type of domain is the hallmark of a new family of neuronal receptors that target a variety of ligands, including neurotrophins and neuropeptides. We have shown that two structural features of the Vps10p domain, the N-terminal propeptide and the C-terminal segment of ten conserved cysteines (10CC), are key elements in the function of Sortilin. The propeptide has two functions. (i) It binds the mature part of Sortilin and prevents ligands in the biosynthetic pathway from binding to the uncleaved proreceptor, and (ii) it facilitates receptor transport in early Golgi compartments by a mechanism that does not depend on its ability to prevent ligand binding. In contrast, other Vps10p domain receptors, such as SorLA and SorCS3, do not need their propeptide for normal and swift processing. The 10CC segment constitutes an exchangeable module containing five conserved disulfide bridges, and using module-shuffling and truncations, we have shown that the 10CC segment is a major ligand-binding region in Sortilin.  相似文献   

5.
Vp10p is a receptor that sorts several different vacuolar proteins by cycling between a late Golgi compartment and the endosome. The cytoplasmic tail of Vps10p is necessary for the recycling, whereas the lumenal domain is predicted to interact with the soluble ligands. We have studied ligand binding to Vps10p by introducing deletions in the lumenal region. This region contains two domains with homology to each other. Domain 2 binds carboxypeptidase Y (CPY), proteinase A (PrA) and hybrids of these proteases with invertase. Moreover, we show that aminopeptidase Y (APY) is a ligand of Vps10p. The native proteases compete for binding to domain 2. Binding of CPY(156)-invertase or PrA(137)-invertase, on the other hand, do not interfere with binding of CPY to Vps10p. Furthermore, the Q24RPL27 sequence known to be important for vacuolar sorting of CPY, is of little importance in the Vps10p-dependent sorting of CPY-invertase. Apparently, domain 2 contains two different binding sites; one for APY, CPY and PrA, and one for CPY-invertase and PrA-invertase. The latter interaction seems not to be sequence specific, and we suggest that an unfolded structure in these ligands is recognized by Vps10p.  相似文献   

6.
The functional properties of the Vps10p-domain receptor SorCS3 are undescribed. Here, we examine its processing and sorting in cellular transfectants, and analyze the binding of potential ligands to the purified receptor. We show that SorCS3 is synthesized as a proprotein and converted to its mature form by N-terminal propeptide cleavage in distal Golgi compartments. The propeptide is not a requirement for normal processing of the receptor and does not prevent ligands from binding to the SorCS3 precursor form. Expression of wt and chimeric receptors further suggests that SorCS3 predominates on the plasma membrane, exhibits slow internalization and does not engage in intracellular trafficking. SorCS3 emerges as a new neurotrophin binding Vps10p-domain receptor functionally distinct from its relatives Sortilin and SorLA.  相似文献   

7.
VPS10 (Vacuolar Protein Sorting) encodes a large type I transmembrane protein (Vps10p), involved in the sorting of the soluble vacuolar hydrolase carboxypeptidase Y (CPY) to the Saccharomyces cerevisiae lysosome-like vacuole. Cells lacking Vps10p missorted greater than 90% CPY and 50% of another vacuolar hydrolase, PrA, to the cell surface. In vitro equilibrium binding studies established that the 1,380-amino acid lumenal domain of Vps10p binds CPY precursor in a 1:1 stoichiometry, further supporting the assignment of Vps10p as the CPY sorting receptor. Vps10p has been immunolocalized to the late-Golgi compartment where CPY is sorted away from the secretory pathway. Vps10p is synthesized at a rate 20-fold lower that that of its ligand CPY, which in light of the 1:1 binding stoichiometry, requires that Vps10p must recycle and perform multiple rounds of CPY sorting. The 164-amino acid Vps10p cytosolic domain is involved in receptor trafficking, as deletion of this domain resulted in delivery of the mutant Vps10p to the vacuole, the default destination for membrane proteins in yeast. A tyrosine-based signal (YSSL80) within the cytosolic domain enables Vps10p to cycle between the late-Golgi and prevacuolar/endosomal compartments. This tyrosine-based signal is homologous to the recycling signal of the mammalian mannose-6-phosphate receptor. A second yeast gene, VTH2, encodes a protein highly homologous to Vps10p which, when over-produced, is capable of suppressing the CPY and PrA missorting defects of a vps10 delta strain. These results indicate that a family of related receptors act to target soluble hydrolases to the vacuole.  相似文献   

8.
The Saccharomyces cerevisiae VPS55 (YJR044c) gene encodes a small protein of 140 amino acids with four potential transmembrane domains. VPS55 belongs to a family of genes of unknown function, including the human gene encoding the obesity receptor gene-related protein (OB-RGRP). Yeast cells with a disrupted VPS55 present normal vacuolar morphology, but exhibit an abnormal secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y. However, trafficking of the membrane-bound vacuolar alkaline phosphatase remains normal. The endocytosis of uracil permease, used as an endocytic marker, is normal in vps55Delta cells, but its degradation is delayed and this marker transiently accumulates in late endosomal compartments. We also found that Vps55p is mainly localized in the late endosomes. Collectively, these results indicate that Vps55p is involved in late endosome to vacuole trafficking. Finally, we show that human OB-RGRP displays the same distribution as Vps55p and corrects the phenotypic defects of the vps55Delta strain. Therefore, the function of Vps55p has been conserved throughout evolution. This study highlights the importance of the multispanning Vps55p and OB-RGRP in membrane trafficking to the vacuole/lysosome of eukaryotic cells.  相似文献   

9.
Membrane proteins that are degraded in the vacuole of Saccharomyces cerevisiae are sorted into discrete intralumenal vesicles, analogous to the internal membranes of multi-vesiculated bodies (MVBs). Recently, it has shown that the attachment of ubiquitin (Ub) mediates sorting into lumenal membranes. We describe a complex of Vps27p and Hse1p that localizes to endosomal compartments and is required for the recycling of Golgi proteins, formation of lumenal membranes and sorting of ubiquitinated proteins into those membranes. The Vps27p-Hse1p complex binds to Ub and requires multiple Ub Interaction Motifs (UIMs). Mutation of these motifs results in specific defects in the sorting of ubiquitinated proteins into the vacuolar lumen. However, the recycling of Golgi proteins and the generation of lumenal membranes proceeds normally in Delta UIM mutants. These data support a model in which the Vps27p-Hse1p complex has multiple functions at the endosome, one of which is as a sorting receptor for ubiquitinated membrane proteins destined for degradation.  相似文献   

10.
We report that the Vps10p domain receptor sorLA binds the adaptor proteins GGA1 and -2, which take part in Golgi-endosome sorting. The GGAs bind with differential requirements via three critical residues in the C-terminal segment of the sorLA cytoplasmic tail. Unlike in sortilin and the mannose 6-phosphate receptors, the GGA-binding segment in sorLA contains neither an acidic cluster nor a dileucine. Our results support the concept of sorLA as a potential sorting receptor and suggest that key residues in sorLA and sortilin conform to a new type of motif (psi-psi-X-X-phi) defining minimum requirements for GGA binding to cytoplasmic receptor domains.  相似文献   

11.
Several transmembrane molecules are cleaved at juxtamembrane extracellular sites leading to shedding of ectodomains. We analysed shedding of members of the Vps10p-D (Vps10p domain; where Vps is vacuolar protein sorting) family of neuronal type-I receptors with partially overlapping functions, and additional proteolytic events initiated by the shedding. When transfected into CHO (Chinese-hamster ovary) cells (CHO-K1), sorCS1a-sorCS1c isoforms were shed at high rates (approximately 0.61% x min(-1)) that were increased approx. 3-fold upon stimulation with phorbol ester. sorCS1c identified in the cultured neuroblastoma cell line SH-SY5Y was shed similarly. In CHO-K1 transfectants, constitutive and stimulated shedding of sorCS3 also occurred at high rates (0.29% and 1.03% x min(-1)). By comparison, constitutive and stimulated shedding of sorLA occurred at somewhat lower rates (0.07% and 0.48% x min(-1)), whereas sorCS2 and sortilin were shed at very low rates even when stimulated (approximately 0.01% x min(-1)). Except for sorCS2, shedding of the receptors was dramatically reduced in mutant CHO cells (CHO-M2) devoid of active TACE (tumour necrosis factor alpha-converting enzyme), demonstrating that this enzyme accounts for most sheddase activity. The release of sorCS1 and sorLA ectodomains initiated rapid cleavage of the membrane-tethered C-terminal stubs that accumulated only in the presence of gamma-secretase inhibitors. Purified shed sorLA bound several ligands similarly to the entire luminal domain of the receptor, including PDGF-BB (platelet-derived growth factor-BB) and amyloid-beta precursor protein. In addition, PDGF-BB also bound to the luminal domains of sorCS1 and sorCS3. The results suggest that ectodomains shed from a subset of Vps10p-D receptors can function as carrier proteins.  相似文献   

12.
Rab5 GTPases are key regulators of protein trafficking through the early stages of the endocytic pathway. The yeast Rab5 ortholog Vps21p is activated by its guanine nucleotide exchange factor Vps9p. Here we show that Vps9p binds ubiquitin and that the CUE domain is necessary and sufficient for this interaction. Vps9p ubiquitin binding is required for efficient endocytosis of Ste3p but not for the delivery of the biosynthetic cargo carboxypeptidase Y to the vacuole. In addition, Vps9p is itself monoubiquitylated. Ubiquitylation is dependent on a functional CUE domain and Rsp5p, an E3 ligase that participates in cell surface receptor endocytosis. These findings define a new ubiquitin binding domain and implicate ubiquitin as a modulator of Vps9p function in the endocytic pathway.  相似文献   

13.
Misfolded secretory proteins are retained in the endoplasmic reticulum (ER) by quality control mechanisms targeted to exposed hydrophobic surfaces. Paradoxically, certain conotoxins expose extensive hydrophobic surfaces upon folding to their bioactive structures. How then can such secreted mini-proteins traverse the secretory pathway? Here we show that secretion of the hydrophobic conotoxin-TxVI is strongly dependent on its propeptide domain, which enhances TxVI export from the ER. The propeptide domain interacts with sorting receptors from the sortilin Vps10p domain family. The sortilin-TxVI interaction occurs in the ER, and sortilin facilitates export of TxVI from the ER to the Golgi. Thus, the prodomain in a secreted hydrophobic protein acts as a tag that can facilitate its ER export by a hitchhiking mechanism.  相似文献   

14.
SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its cytoplasmic tail mediates efficient Golgi body-endosome transport, as well as AP-2 complex-dependent endocytosis. Functional sorting sites were mapped to an acidic cluster-dileucine-like motif and to a GGA binding site in the C terminus. Experiments in permanently or transiently AP-1 mu1-chain-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged in retraction of the receptor from endosomes.  相似文献   

15.
The novel transmembrane aspartic protease BACE (for Beta-site APP Cleaving Enzyme) is the beta-secretase that cleaves amyloid precursor protein to initiate beta-amyloid formation. As such, BACE is a prime therapeutic target for the treatment of Alzheimer's disease. BACE, like other aspartic proteases, has a propeptide domain that is removed to form the mature enzyme. BACE propeptide cleavage occurs at the sequence RLPR downward arrowE, a potential furin recognition motif. Here, we explore the role of furin in BACE propeptide domain processing. BACE propeptide cleavage in cells does not appear to be autocatalytic, since an inactive D93A mutant of BACE is still cleaved appropriately. BACE and furin co-localize within the Golgi apparatus, and propeptide cleavage is inhibited by brefeldin A and monensin, drugs that disrupt trafficking through the Golgi. Treatment of cells with the calcium ionophore, leading to inhibition of calcium-dependent proteases including furin, or transfection with the alpha(1)-antitrypsin variant alpha(1)-PDX, a potent furin inhibitor, dramatically reduces cleavage of the BACE propeptide. Moreover, the BACE propeptide is not processed in the furin-deficient LoVo cell line; however, processing is restored upon furin transfection. Finally, in vitro digestion of recombinant soluble BACE with recombinant furin results in complete cleavage only at the established E46 site. Taken together, our results strongly suggest that furin, or a furin-like proprotein convertase, is responsible for cleaving the BACE propeptide domain to form the mature enzyme.  相似文献   

16.
The Sec1/Munc18 (SM) family of proteins is thought to impart compartmental specificity to vesicle fusion reactions. Here we report characterization of Vps33p, an SM family member previously thought to act exclusively at the vacuolar membrane with the vacuolar syntaxin Vam3p. Vacuolar morphology of vps33Delta cells resembles that of cells lacking both Vam3p and the endosomal syntaxin Pep12p, suggesting that Vps33p may function with these syntaxins at the vacuole and the endosome. Consistent with this, vps33 mutants secrete the Golgi precursor form of the vacuolar hydrolase CPY into the medium. We also demonstrate that Vps33p acts at other steps, for vps33 mutants show severe defects in endocytosis at the late endosome. At the endosome, Vps33p and other class C members exist as a complex with Vps8p, a protein previously known to act in transport between the late Golgi and the endosome. Vps33p also interacts with Pep12p, a known interactor of the SM protein Vps45p. High copy PEP7/VAC1 suppresses vacuolar morphology defects of vps33 mutants. These findings demonstrate that Vps33p functions at multiple trafficking steps and is not limited to action at the vacuolar membrane. This is the first report demonstrating the involvement of a single syntaxin with two SM proteins at the same organelle.  相似文献   

17.
The precise trafficking routes followed by newly synthesized lysosomal membrane proteins after exit from the Golgi are unclear. To study these events we created a novel chimera (YAL) having a lumenal domain comprising two tyrosine sulfation motifs fused to avidin, and the transmembrane and cytoplasmic domains of lysosome associated membrane protein 1 (Lamp1). The newly synthesized protein rapidly transited from the trans- Golgi Network (TGN) to lysosomes (t(1/2) approximately 30 min after a lag of 15-20 min). However, labeled chimera was captured by biotinylated probes endocytosed for only 5 min, indicating that the initial site of entry into the endocytic pathway was early endosomes. Capture required export of YAL from the TGN, and endocytosis of the biotinylated reagent, and was essentially quantitative within 2 h of chase, suggesting that all molecules were following an identical route. There was no evidence of YAL trafficking via the cell surface. Fusion of TGN-derived vesicles with 5 min endosomes could be recapitulated in vitro, but neither late endosomes nor lysosomes could serve as acceptor compartments. This suggests that contrary to previous conclusions, most if not all newly synthesized Lamp1 traffics from the TGN to early endosomes prior to delivery to late endosomes and lysosomes.  相似文献   

18.
We have previously shown that the E protein of the coronavirus infectious bronchitis virus (IBV) is localized to the Golgi complex when expressed exogenously from cDNA. Here, we report that neither the transmembrane domain nor the short lumenal domain of IBV E is required for Golgi targeting. However, an N-terminal truncation containing only the cytoplasmic domain (CTE) was efficiently localized to the Golgi complex, and this domain could retain a reporter protein in the Golgi. Thus, the cytoplasmic tail of the E protein is necessary and sufficient for Golgi targeting. The IBV E protein is palmitoylated on one or two cysteine residues adjacent to its transmembrane domain, but palmitoylation was not required for proper Golgi targeting. Using C-terminal truncations, we determined that the IBV E Golgi targeting information is present between tail amino acids 13 and 63. Upon treatment with brefeldin A, both the E and CTE proteins redistributed to punctate structures that colocalized with the Golgi matrix proteins GM130 and p115 instead of being localized to the endoplasmic reticulum like Golgi glycosylation enzymes. This suggests that IBV E is associated with the Golgi matrix through interactions of its cytoplasmic tail and may have interesting implications for coronavirus assembly in early Golgi compartments.  相似文献   

19.
The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4- ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.  相似文献   

20.
Sorting protein-related receptor (SorLA/LR11) is a highly conserved mosaic receptor that is expressed by cells in a number of different tissues including principal cells of the collecting ducts in the kidney and neurons in the central and peripheral nervous systems. SorLA/LR11 has features that indicate it serves as a sorting receptor shuttling between the plasma membrane, endosomes, and the Golgi. We have found that a fraction of SorLA/LR11 that is synthesized in the kidney and the brain bears N-linked oligosaccharides that are modified with terminal beta1,4-linked GalNAc-4-SO(4). Oligosaccharides located in the vacuolar sorting (Vps) 10p domain (Vps10p domain) are modified with beta1,4-linked GalNAc when the Vps10p domain is expressed in cells along with either of two recently cloned protein-specific beta1,4GalNAc-transferases, GalNAcTIII and GalNAcTIV. Either of two sequences with basic amino acids located within the Vps10p domain is able to mediate recognition by these beta1,4GalNAc-transferases. The highly specific modification of oligosaccharides in the Vps10p domain of SorLA/LR11 with terminal GalNAc-4-SO(4) suggests that this unusual modification may modulate the interaction of SorLA/LR11 with proteins and influence their trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号