首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insertions, substitutions, and the origin of microsatellites   总被引:7,自引:0,他引:7  
This paper uses data from the Human Gene Mutation Database to contrast two hypotheses for the origin of short DNA repeats: substitutions and insertions that duplicate adjacent sequences. Because substitutions are much more common than insertions, they are the dominant source of new 2-repeat loci. Insertions are rarer, but over 70% of the 2-4 base insertion mutations are duplications of adjacent sequences, and over half of these generate new repeat regions. Insertions contribute fewer new repeat loci than substitutions, but their relative importance increases rapidly with repeat number so that all new 4-5-repeat mutations come from insertions, as do all 3-repeat mutations of tetranucleotide repeats. This suggests that the process of repeat duplication that dominates microsatellite evolution at high repeat numbers is also important very early in microsatellite evolution. This result sheds light on the puzzle of the origin of short tandem repeats. It also suggests that most short insertion mutations derive from a slippage-like process during replication.  相似文献   

2.
Human minisatellites consist of tandem arrays of short repeat sequences, and some are highly polymorphic in numbers of repeats among individuals. Since these loci mutate much more frequently than coding sequences, they make attractive markers for screening populations for genetic effects of mutagenic agents. Here we report the results of our analysis of mutations at eight hypervariable minisatellite loci in the offspring (61 from exposed families in 60 of which only one parent was exposed, and 58 from unexposed parents) of atomic bomb survivors with mean doses of >1 Sv. We found 44 mutations in paternal alleles and eight mutations in maternal alleles with no indication that the high doses of acutely applied radiation had caused significant genetic effects. Our finding contrasts with those of some other studies in which much lower radiation doses, applied chronically, caused significantly increased mutation rates. Possible reasons for this discrepancy are discussed.  相似文献   

3.
Minisatellites are highly variable tandem repeats used for over 20 years in humans for DNA fingerprinting. In prokaryotes fingerprinting techniques exploiting VNTR (variable number of tandem repeats) polymorphisms have become widely used recently in bacterial typing. However although many investigations into the mechanisms underlying minisatellite variation in humans have been performed, relatively little is known about the processes that mediate bacterial minisatellite polymorphism. An understanding of this is important since it will influence how the results from VNTR experiments are interpreted. The minisatellites of Mycobacterium tuberculosis are well characterized since they are some of the few polymorphic loci in what is otherwise a very homogeneous organism. Using VNTR results from a well-defined and characterized set of M. tuberculosis strains we show that the repeats at a locus are likely to evolve by stepwise contraction or expansion in the number of repeats. A stochastic continuous-time population mathematical model was developed to simulate the evolution of the repeats. This allowed estimation of the tendency of the repeats to increase or decrease and the rate at which they change. The majority of loci tend to lose rather than gain repeats. All of the loci mutate extremely slowly, with an average rate of 2.3 x 10(-8), which is 350 times slower than that of a set of VNTR repeats with similar diversity observed experimentally in Escherichia coli. This suggests that the VNTR profile of a strain of M. tuberculosis will be indicative of its clonal lineage and will be unlikely to vary in epidemiologically-related strains.  相似文献   

4.
The use of microsatellites in population genetics is hindered by a lack of understanding of the pattern and origin of mutations, the need to develop more specific and better computational models, and a paucity of information about specific taxa and loci. We analyzed between 4 and 10 allele sequences from 10 different microsatellites in Eurasian badgers in order to determine the compliance of the sequences with stepwise mutation models and the origin of that variability which cannot be detected through standard genotyping procedures. All microsatellite loci exhibited imperfections and/or substitutions and indels in the flanking region, as well as additions or deletions of repeat units. Our data set of sequences showed a higher number of imperfect repeats than other published badger and carnivore sequences. This could be attributed to the process of loci isolation because when genetic variability is low, researchers may be more likely to use imperfect loci if these are variable in the population being studied. Locus Mel15 had 2 repetitive arrays: one was part of a polypyrimidine region of a carnivoran short interspersed nuclear element (CAN-SINE) and the other was located in an A-rich region typical of these insertions. In spite of this complexity, heterozygosity was correlated with the maximum number of repeats. Thus, although new theoretical models are being evolved to cover complex patterns of microsatellite mutation, sequencing electromorphs is needed to identify microsatellites or portions of them whose evolution can be modeled under simple models.  相似文献   

5.
6.
We studied microsatellite frequency and distribution in 21.76-Mb random genomic sequences, 0.67-Mb BAC sequences from the Z chromosome, and 6.3-Mb EST sequences of Bombyx mori. We mined microsatellites of >/=15 bases of mononucleotide repeats and >/=5 repeat units of other classes of repeats. We estimated that microsatellites account for 0.31% of the genome of B. mori. Microsatellite tracts of A, AT, and ATT were the most abundant whereas their number drastically decreased as the length of the repeat motif increased. In general, tri- and hexanucleotide repeats were overrepresented in the transcribed sequences except TAA, GTA, and TGA, which were in excess in genomic sequences. The Z chromosome sequences contained shorter repeat types than the rest of the chromosomes in addition to a higher abundance of AT-rich repeats. Our results showed that base composition of the flanking sequence has an influence on the origin and evolution of microsatellites. Transitions/transversions were high in microsatellites of ESTs, whereas the genomic sequence had an equal number of substitutions and indels. The average heterozygosity value for 23 polymorphic microsatellite loci surveyed in 13 diverse silkmoth strains having 2-14 alleles was 0.54. Only 36 (18.2%) of 198 microsatellite loci were polymorphic between the two divergent silkworm populations and 10 (5%) loci revealed null alleles. The microsatellite map generated using these polymorphic markers resulted in 8 linkage groups. B. mori microsatellite loci were the most conserved in its immediate ancestor, B. mandarina, followed by the wild saturniid silkmoth, Antheraea assama.  相似文献   

7.
The rapid increase in genomic sequences provides new opportunities for comparative genomics. In this report, we describe a novel family of repeat sequences that is present in Bacteria and Archaea but not in Eukarya. The repeat loci typically consisted of repetitive stretches of nucleotides with a length of 25 to 37 bp alternated by nonrepetitive DNA spacers of approximately equal size as the repeats. The nucleotide sequences and the size of the repeats were highly conserved within a species, but between species the sequences showed no similarity. Due to their characteristic structure, we have designated this family of repeat loci as SPacers Interspersed Direct Repeats (SPIDR). The SPIDR loci were identified in more than forty different prokaryotic species. Individual species such as Mycobacterium tuberculosis contain one SPIDR locus, while other species such as Methanococcus jannaschii contained up to 20 different loci. The number of repeats in a locus varies greatly from two repeats to several dozens of repeats. The SPIDR loci were flanked by a common 300-500-bp leader sequence, which appeared to be conserved within a species but not between species. The SPIDR locus of M. tuberculosis is extensively used for strain typing. The finding of SPIDR loci in other prokaryotes, including the pathogens Salmonella, Campylobacter, and Pasteurella may extend this surveillance to other species.  相似文献   

8.
Human microsatellites: mutation and evolution   总被引:1,自引:0,他引:1  
Nikitina TV  Nazarenko SA 《Genetika》2004,40(10):1301-1318
Microsatellites (MSs) are short tandem DNA repeats with the repetitive motif of two to six nucleotides, forming tracts up to hundreds of nucleotides long. Notwithstanding the active use of MSs in genetic studies of various biological problems, the reasons for their wide occurrence in the genome, their possible functions, and mutational behavior are still unclear. The mutation rate in MS repeats is on average several orders of magnitude higher than in the remaining DNA, which allows for direct estimation of evolutionary transformation rate in nucleotide sequences of the genome. Mutation process in MSs is species-specific; furthermore, within a species it differs among loci with different repeat size, among alleles of one locus, and among individuals of different sex and age. Most MS mutations are caused by DNA slippage during replication but the probability of this event depends on the locus. In this review, a number of models of MS evolution are discussed, which account for the relationship between mutation rate and allele size, different mutation direction in alleles of different size, and the appearance of point mutations within repeat tracts restricting allele size. The MS evolution is considered mainly in the context of selective neutrality, although there is evidence showing functional significance of some variants of tandem repeats and thus their possible selective value.  相似文献   

9.
All bacterial genomes contain multiple loci of repetitive DNA. Repeat unit sizes and repeat sequences may vary when multiple loci are considered for different isolates of an individual microbial species. Moreover, it has been documented on many occasions that the number of repeat units per locus is a strain-defining parameter. Consequently, there is isolate-specificity in the number of repeats per locus when different strains of a given bacterial species are compared. The experimental assessment of this variability for a number of different loci has been called 'multilocus variable number of tandem repeat analysis' (MLVA). The approach can be supported or extended by locus-specific DNA sequencing for establishing mutations in the individual repeat units, which usually enhances the resolution of the approach considerably. Essentially, MLVA with or without supportive sequencing has been developed for all of the medically relevant bacterial species and can be used effectively for tracing outbreaks or other forms of bacterial dissemination. MLVA is a modern, timely and versatile bacterial typing methodology.  相似文献   

10.
We present evidence that a proportion of alleles at two human minisatellite loci is undetected by standard Southern blot hybridization. In each case the missing allele(s) can be identified after PCR amplification and correspond to tandem arrays too short to detect by hybridization. At one locus, there is only one undetected allele (population frequency 0.3), which contains just three repeat units. At the second locus, there are at least five undetected alleles (total population frequency 0.9) containing 60-120 repeats; they are not detected because these tandem repeats give very poor signals when used as a probe in standard Southern blot hybridization, and also cross-hybridize with other sequences in the genome. Under these circumstances only signals from the longest tandemly repeated alleles are detectable above the nonspecific background. The structures of these loci have been compared in human and primate DNA, and at one locus the short human allele containing three repeat units is shown to be an intermediate state in the expansion of a monomeric precursor allele in primates to high copy number in the longer human arrays. We discuss the implications of such loci for studies of human populations, minisatellite isolation by cloning, and the evolution of highly variable tandem arrays.  相似文献   

11.
12.
Y X Fu  R Chakraborty 《Genetics》1998,150(1):487-497
Minisatellite and microsatellite are short tandemly repetitive sequences dispersed in eukaryotic genomes, many of which are highly polymorphic due to copy number variation of the repeats. Because mutation changes copy numbers of the repeat sequences in a generalized stepwise fashion, stepwise mutation models are widely used for studying the dynamics of these loci. We propose a minimum chi-square (MCS) method for simultaneous estimation of all the parameters in a stepwise mutation model and the ancestral allelic type of a sample. The MCS estimator requires knowing the mean number of alleles of a certain size in a sample, which can be estimated using Monte Carlo samples generated by a coalescent algorithm. The method is applied to samples of seven (CA)n repeat loci from eight human populations and one chimpanzee population. The estimated values of parameters suggest that there is a general tendency for microsatellite alleles to expand in size, because (1) each mutation has a slight tendency to cause size increase and (2) the mean size increase is larger than the mean size decrease for a mutation. Our estimates also suggest that most of these CA-repeat loci evolve according to multistep mutation models rather than single-step mutation models. We also introduced several quantities for measuring the quality of the estimation of ancestral allelic type, and it appears that the majority of the estimated ancestral allelic types are reasonably accurate. Implications of our analysis and potential extensions of the method are discussed.SINCE the discovery that a large number of loci with tandemly repeated sequences in human and many eukaryote species are highly polymorphic because of copy number variation of the repeats in different individuals (Jeffreys 1985; Litt and Luty 1989; Weber and May 1989), allele size data from such loci are rapidly becoming the dominant source of genetic markers for genome mapping, forensic testing, and population studies. Loci with repeat sequences longer than 5 bp are generally referred to as minisatellite or variable number tandem repeat loci, and those with repeat sequences between 2 to 5 bp are referred to as microsatellite or short tandem repeat loci (Tautz 1993). Because mutations change the copy number of such loci in a stepwise fashion, rapid accumulation of population samples from minisatellite and microsatellite loci has resurrected the interest of the stepwise mutation model (SMM), which was popular in the 1970s.  相似文献   

13.
The simple sequence repeat (SSR) or microsatellite marker is currently the preferred molecular marker due to its highly desirable properties. The aim of this study was to develop and characterize more SSR markers because the number of SSR markers currently available in tomato is very limited. Five hundred DNA sequences of tomato were searched for SSRs and analyzed for the design of PCR primers. Of the 158 pairs of SSR primers screened against a set of 19 diverse tomato cultivars, 129 pairs produced the expected DNA fragments in their PCR products, and 65 of them were polymorphic with the polymorphism information content (PIC) ranging from 0.09 to 0.67. Among the polymorphic loci, 2-6 SSR alleles were detected for each locus with an average of 2.7 alleles per locus; 49.2% of these loci had two alleles and 33.8% had three alleles. The vast majority (93.8%) of the microsatellite loci contained di- or tri-nucleotide repeats and only 6.2% had tetra- and penta-nucleotide repeats. It was also found that TA/AT was the most frequent type of repeat, and the polymorphism information content (PIC) was positively correlated with the number of repeats. The set of 19 tomato cultivars were clustered based on the banding patterns generated by the 65 polymorphic SSR loci. Since the markers developed in this study are primarily from expressed sequences, they can be used not only for molecular mapping, cultivar identification and marker-assisted selection, but for identifying gene-trait relations in tomato.  相似文献   

14.
Though extensively used in a variety of disciplines, the evolutionary pattern of microsatellite sequences is still unclear. We addressed several questions relating to microsatellite evolution by analysing historically accumulated mutation events in a large set of artiodactyl (CA)n repeats, through sequence analysis of orthologous bovine and ovine loci. The substitution rate in microsatellite flanking sequences was not different from that in intron sequences, suggesting that if intron sequences in general are selectively neutral, sequences close to microsatellites are similarly so. This observation thus does not support the idea that successful heterologous amplification of microsatellites across distantly related taxa would be due to flanking sequences generally being under some form of selection. Interestingly, the substitution rate at the first nucleotide positions flanking repeats was significantly higher than in sequences further away. Moreover, the substitution rate in repeat units in the very end of microsatellites was significantly higher than that in the middle of repeat regions. Together these observations suggest a relative instability close to the boundary between repetitive and unique sequences. We present three models that potentially could explain such a feature, all involving inefficiency of mismatch repair systems.  相似文献   

15.
(TG)n uncovers a sex-specific hybridization pattern in cattle   总被引:2,自引:0,他引:2  
Screening of a bovine genomic library with the human minisatellite 33.6 probe uncovered a family of clones that, when used to probe Southern blots of bovine genomic DNA digested with the restriction enzyme HaeIII or MboI, revealed sexually dimorphic, but otherwise virtually monomorphic, patterns among the larger DNA fragments to which they hybridized. Characterization of one of these clones revealed that it contains different minisatellite sequences. The sexual dimorphism hybridization pattern observed with this clone was found to be due to multiple copies of two tandemly interspersed repeats: the simple sequence (TG)n and a previously undescribed 29-bp sequence. Both repeats appear to share many genomic loci including autosomal loci. In contrast, Southern analysis of AluI- or HinfI-digested bovine DNA with the (TG)n repeat used as a probe yielded substantial polymorphism. These results show that (i) different minisatellites can be found in a cluster, (ii) both simple and more complex repeated sequences other than the simple quaternary (GATA)n repeat can be sexually dimorphic, and (iii) simple repeats can reveal substantial polymorphism.  相似文献   

16.
The biologically active state of many proteins requires their prior homo-oligomerisation. Such complexes are typically symmetrical, a feature that has been proposed to increase their stability and facilitate the evolution of allosteric regulation. We wished to examine the possibility that similar structures and properties could arise from genetic amplifications leading to internal symmetrical repeats. For this, we identified internal structural repeats in a nonredundant Protein Data Bank subset. While testing if repeats in proteins tend to be symmetrical, we found that about half of the large internal repeats are symmetrical, most frequently around a rotation axis of 180°. These repeats were most likely created by genetic amplification processes because they show significant sequence similarity. Symmetrical repeats tend to have a fixed number of copies corresponding to their rotational symmetry order, that is, two for 180° rotation axis, whereas asymmetrical repeats are in longer proteins and show copy number variability. When possible, we confirmed that proteins with symmetrical repeats folding as an n-mer have homologues lacking the repeat with a higher oligomerisation number corresponding to the rotation symmetry order of the repeat. Phylogenetic analyses of these protein families suggest that typically, but not always, symmetrical repeats arise in one single event from proteins that are homo-oligomers. These results suggest that oligomerisation and amplification of internal sequences can interplay in evolutionary terms because they result in functional analogues when the latter exhibit rotational symmetry.  相似文献   

17.
Protein sequences are normally the most conserved elements of genomes owing to purifying selection to maintain their functions. We document an extraordinary amount of within-species protein sequence variation in the model eukaryote Dictyostelium discoideum stemming from triplet DNA repeats coding for long strings of single amino acids. D. discoideum has a very large number of such strings, many of which are polyglutamine repeats, the same sequence that causes various human neurological disorders in humans, like Huntington’s disease. We show here that D. discoideum coding repeat loci are highly variable among individuals, making D. discoideum a candidate for the most variable proteome. The coding repeat loci are not significantly less variable than similar non-coding triplet repeats. This pattern is consistent with these amino-acid repeats being largely non-functional sequences evolving primarily by mutation and drift.  相似文献   

18.
Conservation and evolution of microsatellite loci in primate taxa   总被引:7,自引:0,他引:7  
Microsatellites are promising genetic markers for the study of demographic structure and phylogenetic history in populations. However, little information exists on the molecular nature of the repeats and their flanking sequences of a same microsatellite in a large range of species. In this study, we report polymorphism and consensus sequences of eight microsatellite loci using human primers in 20 primate species. The results show size polymorphism in almost all species and microsatellites. These loci are therefore useful markers for population genetic studies between populations of the same species. Insertion/deletion events are frequent in the flanking regions, the majority concerning several contiguous bases. This is in contrast with the more usual single base pair events in non-coding regions. The ranges of allele lengths in non-human primates often show no overlap with that of human, usually due to the deletion/insertion events in the flanking sequences, producing smaller allele lengths rather than smaller numbers of repeats. The use of length of PCR product will bias the inter-species interpretation reducing the number of observable alleles and treating as the same allele very divergent molecular sequences. Caution should be used when employing microsatellites in cross-species comparisons in which the species under study are separated by significant amounts of evolutionary time: in such cases allele comparison cannot be based on lengths alone.  相似文献   

19.
In a recent study, we reported that the combined average mutation rate of 10 di-, 6 tri-, and 8 tetranucleotide repeats in Drosophila melanogaster was 6.3 x 10(-6) mutations per locus per generation, a rate substantially below that of microsatellite repeat units in mammals studied to date (range = 10(-2)-10(-5) per locus per generation). To obtain a more precise estimate of mutation rate for dinucleotide repeat motifs alone, we assayed 39 new dinucleotide repeat microsatellite loci in the mutation accumulation lines from our earlier study. Our estimate of mutation rate for a total of 49 dinucleotide repeats is 9.3 x 10(-6) per locus per generation, only slightly higher than the estimate from our earlier study. We also estimated the relative difference in microsatellite mutation rate among di-, tri-, and tetranucleotide repeats in the genome of D. melanogaster using a method based on population variation, and we found that tri- and tetranucleotide repeats mutate at rates 6.4 and 8.4 times slower than that of dinucleotide repeats, respectively. The slower mutation rates of tri- and tetranucleotide repeats appear to be associated with a relatively short repeat unit length of these repeat motifs in the genome of D. melanogaster. A positive correlation between repeat unit length and allelic variation suggests that mutation rate increases as the repeat unit lengths of microsatellites increase.   相似文献   

20.
Rate and pattern of mutation at microsatellite loci in maize   总被引:30,自引:0,他引:30  
Microsatellites are important tools for plant breeding, genetics, and evolution, but few studies have analyzed their mutation pattern in plants. In this study, we estimated the mutation rate for 142 microsatellite loci in maize (Zea mays subsp. mays) in two different experiments of mutation accumulation. The mutation rate per generation was estimated to be 7.7 x 10(-4) for microsatellites with dinucleotide repeat motifs, with a 95% confidence interval from 5.2 x 10(-4) to 1.1 x 10(-3). For microsatellites with repeat motifs of more than 2 bp in length, no mutations were detected; so we could only estimate the upper 95% confidence limit of 5.1 x 10(-5) for the mutation rate. For dinucleotide repeat microsatellites, we also determined that the variance of change in the number of repeats (sigma(m)2) is 3.2. We sequenced 55 of the 73 observed mutations, and all mutations proved to be changes in the number of repeats in the microsatellite or in mononucleotide tracts flanking the microsatellite. There is a higher probability to mutate to an allele of larger size. There is heterogeneity in the mutation rate among dinucleotide microsatellites and a positive correlation between the number of repeats in the progenitor allele and the mutation rate. The microsatellite-based estimate of the effective population size of maize is more than an order of magnitude less than previously reported values based on nucleotide sequence variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号