首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A remarkable amount of our current knowledge of mechanisms underlying experience-dependent plasticity during cortical development comes from study of the mammalian visual cortex. Recent advances in high-resolution cellular imaging, combined with genetic manipulations in mice, novel fluorescent recombinant probes, and large-scale screens of gene expression, have revealed multiple molecular mechanisms that underlie structural and functional plasticity in visual cortex. We situate these mechanisms in the context of a new conceptual framework of feed-forward and feedback regulation for understanding how neurons of the visual cortex reorganize their connections in response to changes in sensory inputs. Such conceptual advances have important implications for understanding not only normal development but also pathological conditions that afflict the central nervous system.  相似文献   

2.
Recent data on learning-related changes in animal and human auditory cortex indicate functions beyond mere stimulus representation and simple recognition memory for stimuli. Rather, auditory cortex seems to process and represent stimuli in a task-dependent fashion. This implies plasticity in neural processing, which can be observed at the level of single neuron firing and the level of spatiotemporal activity patterns in cortical areas. Auditory cortex is a structure in which behaviorally relevant aspects of stimulus processing are highly developed because of the fugitive nature of auditory stimuli.  相似文献   

3.
Depriving one eye of visual experience during a sensitive period of development results in a shift in ocular dominance (OD) in the primary visual cortex (V1). To assess the heritability of this form of cortical plasticity and identify the responsible gene loci, we studied the influence of monocular deprivation on OD in a large number of recombinant inbred mouse strains derived from mixed C57BL/6J and DBA/2J backgrounds (BXD). The strength of imaged intrinsic signal responses in V1 to visual stimuli was strongly heritable as were various elements of OD plasticity. This has important implications for the use of mice of mixed genetic backgrounds for studying OD plasticity. C57BL/6J showed the most significant shift in OD, while some BXD strains did not show any shift at all. Interestingly, the increase in undeprived ipsilateral eye responses was not correlated to the decrease in deprived contralateral eye responses, suggesting that the size of these components of OD plasticity are not genetically controlled by only a single mechanism. We identified a quantitative trait locus regulating the change in response to the deprived eye. The locus encompasses 13 genes, two of which--Stch and Nrip1--contain missense polymorphisms. The expression levels of Stch and to a lesser extent Nrip1 in whole brain correlate with the trait identifying them as novel candidate plasticity genes.  相似文献   

4.
Since recently, it is possible, using noninvasive cortical stimulation, such as the protocol of paired associative stimulation (PAS), to induce the plastic changes in the motor cortex, in humans that mimic Hebb's model of learning. Application of TMS conjugated with peripheral electrical stimulation at strictly coherent temporal manner lead to convergence of inputs in the sensory-motor cortex, with the consequent synaptic potentiation or weakening, if applied repetitively. However, when optimal interstimulus interval (ISI) for induction of LTP-like effects is applied as a single pair, Motor evoked potential (MEP) amplitude inhibition is observed, the paradigm known as short-latency afferent inhibition (SLAI). Aiming to resolve this paradox, PAS protocols were applied, with 200 repetitions of TMS pulses paired with median nerve electrical stimulation, at ISI equal to individual latencies of evoked response of somatosensory cortex (N(20)) (PAS(LTP)), and at ISI of N(20) shortened for 5 msec (PAS(LTD)) - protocols that mimic LTP-like changes in the human motor cortex. MEP amplitudes before, during and after interventions were measured as an indicator based on output signals originating from the motor system. Post-intervention MEP amplitudes following the TMS protocols of PAS(LTP) and PAS(LTD) were facilitated and depressed, respectively, contrary to MEP amplitudes during intervention. During PAS(LTP) MEP amplitudes were significantly decreased in case of PAS(LTP), while in the case of PAS(LTD) an upward trend was observed. In conclusions, a possible explanation for the seemingly paradoxical effect of PAS can be found in the mechanism of homeostatic modulation of plasticity. Those findings indicate the existence of complex relationships in the development of plasticity induced by stimulation, depending on the level of the previous motor cortex excitability.  相似文献   

5.
Cholinergic modulation of skill learning and plasticity   总被引:1,自引:0,他引:1  
Kilgard M 《Neuron》2003,38(5):678-680
The basal forebrain cholinergic system strongly influences both cortical plasticity and learning. Directly relating these two roles has proven difficult. New results indicate that nucleus basalis lesions prevent motor cortex map plasticity and impair skill learning. These results strengthen the hypothesis that nucleus basalis gates neural plasticity necessary for instrumental learning.  相似文献   

6.
Sensory deprivation during a critical period reduces spine motility and disrupts receptive field structure of layer 2/3 neurons in rat barrel cortex. To determine the locus of plasticity, we used laser scanning photostimulation, allowing us to rapidly map intracortical synaptic connectivity in brain slices. Layer 2/3 neurons differed in their spatial distributions of presynaptic partners: neurons directly above barrels received, on average, significantly more layer 4 input than those above the septa separating barrels. Complementary connectivity was found in deprived cortex: neurons above septa were now strongly coupled to septal regions, while connectivity between barrel regions and layer 2/3 was reduced. These results reveal competitive interactions between barrel and septal circuits in the establishment of precise intracortical circuits.  相似文献   

7.
Sound localization is a computational process that requires the central nervous system to measure various auditory cues and then associate particular cue values with appropriate locations in space. Behavioral experiments show that barn owls learn to associate values of cues with locations in space based on experience. The capacity for experience-driven changes in sound localization behavior is particularly great during a sensitive period that lasts until the approach of adulthood. Neurophysiological techniques have been used to determine underlying sites of plasticity in the auditory space-processing pathway. The external nucleus of the inferior colliculus (ICX), where a map of auditory space is synthesized, is a major site of plasticity. Experience during the sensitive period can cause large-scale, adaptive changes in the tuning of ICX neurons for sound localization cues. Large-scale physiological changes are accompanied by anatomical remodeling of afferent axons to the ICX. Changes in the tuning of ICX neurons for cue values involve two stages: (1) the instructed acquisition of neuronal responses to novel cue values and (2) the elimination of responses to inappropriate cue values. Newly acquired neuronal responses depend differentially on NMDA receptor currents for their expression. A model is presented that can account for this adaptive plasticity in terms of plausible cellular mechanisms. Accepted: 17 April 1999  相似文献   

8.
Experience-dependent plasticity of receptive fields in the auditory cortex has been demonstrated by electrophysiological experiments in animals. In the present study we used PET neuroimaging to measure regional brain activity in volunteer human subjects during discriminatory classical conditioning of high (8000 Hz) or low (200 Hz) frequency tones by an aversive 100 dB white noise burst. Conditioning-related, frequency-specific modulation of tonotopic neural responses in the auditory cortex was observed. The modulated regions of the auditory cortex positively covaried with activity in the amygdala, basal forebrain and orbitofrontal cortex, and showed context-specific functional interactions with the medial geniculate nucleus. These results accord with animal single-unit data and support neurobiological models of auditory conditioning and value-dependent neural selection.  相似文献   

9.
Rapid, experience-dependent plasticity in developing visual cortex is thought to be competitive. After monocular visual deprivation, the reduction in response of binocular neurons to one eye is matched by a corresponding increase to the other. Chronic optical imaging in mice deficient in TNFalpha reveals the normal initial loss of deprived-eye responses, but the subsequent increase in response to the open eye is absent. This mutation also blocks homeostatic synaptic scaling of mEPSCs in visual cortex in vitro, without affecting LTP. In monocular cortex, thought not to be subject to competition, responses in TNFalpha mutants are as reduced as in the binocular zone. Pharmacological inhibition of endogenous TNFalpha in wild-type mice phenocopies the knockout. These findings suggest that experience-dependent competition in developing visual cortex is the outcome of two distinct, noncompetitive processes, a loss of deprived-eye responses followed by an apparently homeostatic increase in responses dependent on TNFalpha signaling.  相似文献   

10.
11.
The neural modulation in central auditory system plays an important role in perception and processing of sound signal and auditory cognition. The inferior colliculus (IC) is both a relay station in central auditory pathway and a sub-cortical auditory center doing the sound signal processing. IC is also modulated by the descending projections from the cortex and auditory thalamus, medial geniculate body, and these neural modulations not only can affect ongoing sound signal processing but can also induce plastic changes in IC.  相似文献   

12.
Plexuses of cholinergic varicose fibers, differing in density in different layers of the neuropil, were found in area AI of the cat's auditory cortex by the histochemical reaction for acetylcholinesterase: Their density was maximal or average in layer I or deeper layers and minimal in layers II and III. Among cells in area AI those which are cholinergic are a few stellate neurons located in layers II–VI. Axons of some neurons terminate on neighboring cells, those of others (some neurons in layer VI) run into the subcortical layer of arcuate association fibers. Cholinergic terminals are located on the bodies and proximal areas of dendrites of neurons most of which do not contain acetylcholinesterase. Choliniceptive neurons of different sizes and shapes are found in all layers of this region of the auditory cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 75–81, January–February, 1984.  相似文献   

13.
Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.  相似文献   

14.
King AJ 《Current biology : CB》2005,15(13):R503-R505
Studies in humans and songbirds have revealed a close link between vocal output and hearing. Now experiments in marmosets have shown that self-generated vocalizations can modulate the activity of neurons in the auditory cortex and even remodel their response properties.  相似文献   

15.
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components.  相似文献   

16.
In stimulus-response-outcome learning, different regions in the cortico-basal ganglia network are progressively involved according to the stage of learning. However, the involvement of sensory cortex remains ellusive even though massive cortical projections to the striatum imply its significant role in this learning. Here we show that the global tonotopic representation in the auditory cortex changed progressively depending on the stage of training in auditory operant conditioning. At the early stage, tone-responsive areas mainly in the core cortex expanded, while both the core and belt cortices shrank at the late stage as behavior became conditioned. Taken together with previous findings, this progressive global plasticity from the core to belt cortices suggests differentiated roles in these areas: the core cortex serves as a filter to better identify auditory objects for hierarchical computation within the belt cortex, while the belt stores auditory objects and affects decision making through direct projections to limbic system and higher association cortex. Thus, the progressive plasticity in the present study reflects a shift from identification to storage of a behaviorally relevant auditory object, which is potentially associated with a habitual behavior.  相似文献   

17.
Jacob V  Petreanu L  Wright N  Svoboda K  Fox K 《Neuron》2012,73(2):391-404
Most functional plasticity studies in the cortex have focused on layers (L) II/III and IV, whereas relatively little is known of LV. Structural measurements of dendritic spines in?vivo suggest some specialization among LV cell subtypes. We therefore studied experience-dependent plasticity in the barrel cortex using intracellular recordings to distinguish regular spiking (RS) and intrinsic bursting (IB) subtypes. Postsynaptic potentials and suprathreshold responses in?vivo revealed a remarkable dichotomy in RS and IB cell plasticity; spared whisker potentiation occurred in IB but not RS cells while deprived whisker depression occurred in RS but not IB cells. Similar RS/IB differences were found in the LII/III to V connections in brain slices. Modeling studies showed that subthreshold changes predicted the suprathreshold changes. These studies demonstrate the major functional partition of plasticity within a single cortical layer and reveal the LII/III to LV connection as a major excitatory locus of cortical plasticity.  相似文献   

18.
Li W  Luxenberg E  Parrish T  Gottfried JA 《Neuron》2006,52(6):1097-1108
It is widely presumed that odor quality is a direct outcome of odorant structure, but human studies indicate that molecular knowledge of an odorant is not always sufficient to predict odor quality. Indeed, the same olfactory input may generate different odor percepts depending on prior learning and experience. Combining functional magnetic resonance imaging with an olfactory paradigm of perceptual learning, we examined how sensory experience modifies odor perception and odor quality coding in the human brain. Prolonged exposure to a target odorant enhanced perceptual differentiation for odorants related in odor quality or functional group, an effect that was paralleled by learning-induced response increases in piriform cortex and orbitofrontal cortex (OFC). Critically, the magnitude of OFC activation predicted subsequent improvement in behavioral differentiation. Our findings suggest that neural representations of odor quality can be rapidly updated through mere perceptual experience, a mechanism that may underlie the development of odor perception.  相似文献   

19.
How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex.  相似文献   

20.
We investigated the functional organization of the human auditory cortex using a novel electrophysiological recording technique combined with an advanced brain magnetic resonance imaging (MRI) technique. Tonotopic mapping data were obtained during single unit recording along the Heschl’s gyrus. Most of the units studied (73%) demonstrated sharply tuned excitatory responses. A tonotopic pattern was observed with the best frequencies systematically increasing as more medial-caudal recording sites were sampled. Additionally, a new auditory field along the posterior aspect of the superior temporal gyrus has been identified using a high spatial resolution direct recording technique. Results obtained during electrical stimulation demonstrate functional connectivity between the primary auditory cortex and the auditory field in the posterior superior temporal gyrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号