首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Liang K  Du W  Zhu W  Liu S  Cui Y  Sun H  Luo B  Xue Y  Yang L  Chen L  Li F 《The Journal of biological chemistry》2011,286(45):39537-39545
The development of insulin-dependent diabetes mellitus (IDDM) results from the selective destruction of pancreatic beta-cells. Both humans and spontaneous models of IDDM, such as NOD mice, have an extended pre-diabetic stage. Dynamic changes in beta-cell mass and function during pre-diabetes, such as insulin hyper-secretion, remain largely unknown. In this paper, we evaluated pre-diabetic female NOD mice at different ages (6, 10, and 14 weeks old) to illustrate alterations in beta-cell mass and function as disease progressed. We found an increase in beta-cell mass in 6-week-old NOD mice that may account for improved glucose tolerance in these mice. As NOD mice aged, beta-cell mass progressively reduced with increasing insulitis. In parallel, secretory ability of individual beta-cells was enhanced due to an increase in the size of slowly releasable pool (SRP) of vesicles. Moreover, expression of both SERCA2 and SERCA3 genes were progressively down-regulated, which facilitated depolarization-evoked secretion by prolonging Ca(2+) elevation upon glucose stimulation. In summary, we propose that different mechanisms contribute to the insulin hyper-secretion at different ages of pre-diabetic NOD mice, which may provide some new ideas concerning the progression and management of type I diabetes.  相似文献   

3.
Alterations in the somatostatin (SRIF)-, insulin- and glucagon-containing cells were examined in two strains of spontaneously diabetic mice, KK and newly inbred non-obese diabetic (NOD) mice, using radioimmunoassay and immunohistochemical methods. The total pancreatic content and concentration of SRIF was decreased in male KK mice compared to their male controls aged 12-18 weeks. These results were consistent with the immunohistochemical findings. Pancreatic glucagon concentration and number of glucagon-containing cells were also decreased in KK mice, but pancreatic insulin concentrations were increased in KK mice. On the other hand, NOD mice aged 12-38 weeks within 15 days after onset of diabetes had increased concentrations of pancreatic SRIF. The pancreatic islets in NOD mice were decreased both in number and in size and were characterized by lymphocyte infiltration. SRIF-containing cells occupied the major part of the endocrine cells of the islets. Insulin-containing cells significantly decreased in number, but the number of glucagon-containing cells was fairly well preserved. These results and previous work concerning obob and dbdb mice indicate a parallel relationship between pancreatic SRIF and glucagon. The pancreatic glucagon thus as well as the pancreatic insulin may be an important determinant of pancreatic SRIF concentration in these diabetic animals.  相似文献   

4.
Activated protein C (aPC) is a natural anticoagulant with strong cyto-protective and anti-inflammatory properties. aPC inhibits pancreatic inflammation and preserves functional islets after intraportal transplantation in mice. Whether aPC prevents the onset or development of type 1 diabetes (T1D) is unknown. In this study, when human recombinant aPC was delivered intraperitoneally, twice weekly for 10 weeks (from week 6 to 15) to non-obese diabetic (NOD) mice, a model for T1D, the incidence of diabetes was reduced from 70% (saline control) to 7.6% by 26 weeks of age. Islets of aPC-treated mice exhibited markedly increased expression of insulin, aPC/protein C, endothelial protein C receptor, and matrix metalloproteinase (MMP)-2 when examined by immunostaining. The insulitis score in aPC-treated mice was 50% less than that in control mice. T regulatory cells (Tregs) in the spleen, pancreatic islets, and pancreatic lymph nodes were increased 37, 53, and 59%, respectively, in NOD mice following aPC treatment. These Tregs had potent suppressor function and, after adoptive transfer, delayed diabetes onset in NOD.severe combined immunodeficiency mice. The culture of NOD mouse spleen cells with aPC reduced the secretion of inflammatory cytokines interleukin (IL)-1β and interferon-γ but increased IL-2 and transforming growth factor-β1, two cytokines required for Treg differentiation. In summary, our results indicate that aPC prevents T1D in the NOD mouse. The aPC mechanism of action is complex, involving induction of Treg differentiation, inhibition of inflammation, and possibly direct cyto-protective effects on β cells.  相似文献   

5.
6.
The histologic hallmark of the development of type 1 diabetes (T1D) is insulitis, characterized by leukocytic infiltration of the pancreatic islets. The molecules controlling the early influx of leukocytes into the islets are poorly understood. Tumor necrosis factor α (TNFα)-stimulated gene 6 (TSG-6) is involved in inflammation, extracellular matrix formation, cell migration, and development. In the present study, we examined the expression and cellular localization of TSG-6 protein in islets of female non-obese diabetic (NOD) mice using frozen section immunofluorescence staining. Pancreata from nondiabetic (8 and 25 weeks old), prediabetic (230–280 mg/dl blood glucose) and diabetic (>300 mg/dl blood glucose) NOD mice were stained for TSG-6, insulin, CD3, CD11c, Mac3 and CD31. TSG-6 protein was detected in 67% of islets of prediabetic mice, 27% of islets of 25-week old nondiabetic mice, and less than 7% of islets of diabetic mice and 8-week old nondiabetic mice. Lastly, islet-derived TSG-6 protein was localized to the infiltrating CD3 and CD11c positive leukocytes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Momordica charantia is a well known medicinal plant used in the traditional medicinal system for the treatment of various diseases including diabetes mellitus. Recently, a novel protein termed as ADMc1 from the seed extract of M. charantia has been identified and isolated showing significant antihyperglycemic activity in type 1 diabetic rats in which diabetes was induced. However, the structure of this protein has not yet been analyzed. Homology modeling approach was used to generate a high quality protein 3D structure for the amino acid sequence of the ADMc1 protein in this study. The comparative assessment of secondary structures revealed ADMc1 as an all-alpha helix protein with random coils. Tertiary structure predicted on the template structure of Napin of B. Napus (PDB ID: 1SM7) with which the ADMc1 showed significant sequence similarity, was validated using protein structure validation tools like PROCHECK, WHAT_CHECK, VERIFY3D and ProSA. Arrangement of disulfide bridges formed by cysteine residues were predicted by the Dianna 1.1 server. The presence of multiple disulfide bond confers the stable nature of the ADMc1 protein. Further, the biological activity of the ADMc1 was assessed in non-obese diabetic (NOD) mice which are spontaneous model of type 1 diabetes. Significant reduction in the blood glucose levels of NOD mice was observed up to 8 h post administration of the rADMc1 protein. Overall, the structural characterizations with antihyperglycemic activity of this seed protein of Momordica charantia demonstrate its potential as an antidiabetic agent.  相似文献   

8.
We previously found that ingestion of an extract of Ninjin-to (NJT; Ren-Shen-Tang) suppressed the development of autoimmune diabetes in C57BL/KsJ mice induced by multiple low doses of streptozotocin. To verify this effects on spontaneous autoimmune diabetes, the effects of NJT on NOD mice were investigated in the present study. NJT, provided in drinking water (0.25%, 450 mg/kg/day) from 6 weeks of age, significantly prevented the incidence of spontaneous diabetes in female NOD mice at 30 weeks of age (2/10) compared with that of the controls (7/10), with no effects on body growth or food intake. Even in non-diabetic mice, the blood glucose levels of the NOD controls gradually increased with age, while such increase in NJT-treated mice was significantly suppressed by preventing any deficiency of glucose tolerance. NJT also significantly suppressed the progression of insulitis, which causes insulin deficiency and diabetes. It is well known that NOD mice develop insulitis and diabetes because of their Th1-dominant autoimmune response. IFN-gamma production from splenic T lymphocytes stimulated with anti-CD3 monoclonal antibodies was increased, whereas IL-4 production was decreased in NOD controls compared to age- and sex-matched normal ICR mice. NJT-treatment reduced these deviations of cytokine production in NOD mice. These data all suggest that NJT can prevent spontaneous insulitis and diabetes by the modification of deviated cytokine production in NOD mice.  相似文献   

9.
Our protocol was developed to cleanly and easily deliver islets or cells under the kidney capsule of diabetic or normal mice. We found that it was easier to concentrate the islets or cells into pellets in the final delivery tubing (PE50) used to transplant the cells under the kidney capsule. This technique provides both speed and ease while reducing any undue stress to the cells or to the mouse. LOADING: Settled, hand picked, islets or pelleted cells are carefully aspirated off the bottom of a 1.5 mL microcentrifuge tube using a p200 pipetteman and a straight, thin-wall pipette tip. A length of PE50 tubing is attached to the pipette tip using a small silicone adapter tubing. Cells are allowed to settle, in the tip, and then are transferred to the PE50 tubing by slowly dialing the pipetteman. Once the cells are near the end of the PE50 tubing, a kink is made and the silicone adaptor tubing is placed over the kink. The PE50 tubing is transferred to a 15 mL conical containing a cut 5 mL pipet, and the PE50 tubing is taped over the side of the 5 mL pipet to prevent curling during centrifuging. Cells are allowed to reach 1,000 rpm and stopped. TRANSPLANTATION: Recipient mice are anesthetized, shaved, and cleaned. A small incision is made on the left flank of the mouse and the kidney is exposed. The kidney, fat, and tissue are kept moist with normal saline swab. The distal end of the PE50 is attached to a Hamilton screw drive syringe, containing a pipette tip, using the silicone adaptor tubing. A small nick is made on the right flank side of the kidney, not too large nor too deep. The beveled end of the PE50 tubing, nearest the cells, is carefully placed under the capsule, the tubing is moved around gently to make space while swabbing normal saline; a dry capsule can tear easily. A small air bubble is delivered under the capsule by slowly dialing the syringe screw drive. Islets are then slowly delivered behind the air bubble. Once the islets have been delivered kidney homeostasis is maintained and the knick is cauterized with low heat. The kidney is placed back into the cavity and the peritoneum and skin are sutured and stapled. Mice are immediately treated with Flunixin and Buprenorphine s.q. and placed in a cage on a heating pad.  相似文献   

10.
Human diabetes mellitus (IDDM; type I diabetes) is a T cell-mediated disease that is closely modeled in non-obese diabetic (NOD) mice. The pathogenesis of IDDM involves the transmigration of autoimmune T cells into the pancreatic islets and the subsequent destruction of insulin-producing beta cells. Therapeutic interventions leading to beta cell regeneration and the reversal of established IDDM are exceedingly limited. We report here that specific inhibition of T cell intra-islet transmigration by using a small molecule proteinase inhibitor restores beta cell functionality, increases insulin-producing beta cell mass, and alleviates the severity of IDDM in acutely diabetic NOD mice. As a result, acutely diabetic NOD mice do not require insulin injections for survival for a significant time period, thus providing a promising clue to effect IDDM reversal in humans. The extensive morphometric analyses and the measurements of both the C-peptide blood levels and the proinsulin mRNA levels in the islets support our conclusions. Diabetes transfer experiments suggest that the inhibitor specifically represses the T cell transmigration and homing processes as opposed to causing immunosuppression. Overall, our data provide a rationale for the pharmacological control of the T cell transmigration step in human IDDM.  相似文献   

11.

Background

The global pattern of varying prevalence of diseases of affluence, such as obesity, cardiovascular disease and diabetes, suggests that some environmental factor specific to agrarian societies could initiate these diseases.

Presentation of the hypothesis

We propose that a cereal-based diet could be such an environmental factor. Through previous studies in archaeology and molecular evolution we conclude that humans and the human leptin system are not specifically adapted to a cereal-based diet, and that leptin resistance associated with diseases of affluence could be a sign of insufficient adaptation to such a diet. We further propose lectins as a cereal constituent with sufficient properties to cause leptin resistance, either through effects on metabolism central to the proper functions of the leptin system, and/or directly through binding to human leptin or human leptin receptor, thereby affecting the function.

Testing the hypothesis

Dietary interventions should compare effects of agrarian and non-agrarian diets on incidence of diseases of affluence, related risk factors and leptin resistance. A non-significant (p = 0.10) increase of cardiovascular mortality was noted in patients advised to eat more whole-grain cereals. Our lab conducted a study on 24 domestic pigs in which a cereal-free hunter-gatherer diet promoted significantly higher insulin sensitivity, lower diastolic blood pressure and lower C-reactive protein as compared to a cereal-based swine feed. Testing should also evaluate the effects of grass lectins on the leptin system in vivo by diet interventions, and in vitro in various leptin and leptin receptor models. Our group currently conducts such studies.

Implications of the hypothesis

If an agrarian diet initiates diseases of affluence it should be possible to identify the responsible constituents and modify or remove them so as to make an agrarian diet healthier.  相似文献   

12.
Exocrine pancreatic function insufficiency, even of short duration, has been reported in juvenile-onset insulin dependent diabetic patients. To evaluate the status of pancreatic acini under decreased B-cell function, tissue insulin, amylase, chymotrypsinogen and trypsinogen in the pancreas were measured in streptozotocin-induced diabetic rats and non-obese diabetic mice in various conditions. In streptozotocin diabetic rats, a dissociation of three enzyme contents was demonstrated in the condition with discontinuation of insulin injection, i.e., a marked decrease in amylase, a significant increase in chymotrypsinogen, but no significant change in trypsinogen. This dissociation was markedly improved in the insulin-treated condition. In non-obese diabetic mice, these enzyme contents were not significantly changed although severe insulitis together with the marked decrease in insulin content was observed. These data show that the cessation of B-cell function alone does not cause insufficiency of exocrine pancreas.  相似文献   

13.
During insulin-dependent diabetes mellitus, immune cells which infiltrate pancreatic islets mediate beta cell destruction over a prolonged asymptomatic prediabetic period. The molecular mechanisms of beta cell death in vivo remain unresolved. At least two major molecular processes of destruction have been proposed. One involves the Fas–FasL (Fas–Fas ligand) system and the other, the perforin pathway. Here, dual-label immunohistochemistry was employed to examine the intra-islet expression, distribution and cellular sources of Fas and FasL in the NOD mouse, during spontaneous diabetes (days 21, 40 and 90) and following acceleration of diabetes with cyclophosphamide (days 0, 4, 7, 11 and 14 after cyclophosphamide administration). The expression of the proteins was correlated with advancing disease. FasL was expressed constitutively in most beta cells but not in glucagon or somatostatin cells or islet inflammatory cells and paralleled the loss of insulin immunolabelling with advancing disease. It was also expressed in beta cells of non-diabetes prone CD-1 and C57BL/6 mice from a young age (day 21). Strong immunolabelling for Fas was first observed in extra-islet macrophages and those close to the islet in NOD and non-diabetes-prone mice. During spontaneous and cyclophosphamide diabetes, it was observed in a higher proportion of islet infiltrating macrophages than CD4 and CD8 T cells, concomitant with advancing insulitis. In cyclophosphamide-treated mice, the proportion of Fas-positive intra-islet CD4 and CD8 T cells at day 14 (with and without diabetes) was considerably higher than at days 0, 4, 7 and 11. At days 11 and 14, a proportion of Fas-positive intra-islet macrophages co-expressed interleukin-1 and inducible nitric oxide synthase. Fas was not detectable in beta cells and other islet endocrine cells during spontaneous and cyclophosphamide induced diabetes. Our results show constitutive expression of FasL in beta cells in the NOD mouse and predominant expression of Fas in intra-islet macrophages and to a lesser extent in T cells prior to diabetes onset. Interleukin-1 in intra-islet macrophages may induce Fas and inducible nitric oxide synthase expression in an autocrine and paracrine manner and mediate beta cell destruction or even death of some macrophages and T cells. However, other mechanisms of beta cell destruction during spontaneous and cyclophosphamide-accelerated diabetes and independent of Fas–FasL, require examination.  相似文献   

14.
The aim of this study was to examine postnatal islet and beta-cell expansion in healthy female control mice and its disturbances in diabetic GIPR(dn) transgenic mice, which exhibit an early reduction of beta-cell mass. Pancreata of female control and GIPR(dn) transgenic mice, aged 10, 45, 90 and 180 days were examined, using state-of-the-art quantitative-stereological methods. Total islet and beta-cell volumes, as well as their absolute numbers increased significantly until 90 days in control mice, and remained stable thereafter. The mean islet volumes of controls also increased slightly but significantly between 10 and 45 days of age, and then remained stable until 180 days. The total volume of isolated beta-cells, an indicator of islet neogenesis, and the number of proliferating (BrdU-positive) islet cells were highest in 10-day-old controls and declined significantly between 10 and 45 days. In GIPR(dn) transgenic mice, the numbers of islets and beta-cells were significantly reduced from 10 days of age onwards vs. controls, and no postnatal expansion of total islet and beta-cell volumes occurred due to a reduction in islet neogenesis whereas early islet-cell proliferation and apoptosis were unchanged as compared to control mice. Insulin secretion in response to pharmacological doses of GIP was preserved in GIPR(dn) transgenic mice, and serum insulin to pancreatic insulin content in response to GLP-1 and arginine was significantly higher in GIPR(dn) transgenic mice vs. controls. We could show that the increase in islet number is mainly responsible for expansion of islet and beta-cell mass in healthy control mice. GIPR(dn) transgenic mice show a disturbed expansion of the endocrine pancreas, due to perturbed islet neogenesis.  相似文献   

15.
16.
Morphological (light microscopical, immunohistological and electron microscopical) findings in the recipient liver of rats with streptozotocin-induced diabetes, obtained 9 months after intraportal injection of neonatal isologous pancreatic islets, are described and their significance discussed. - The results support the assumption of active ingrowth of nonmyelinated nerve fibers into the islet isografts. - The hepatocytes surrounding the islet isografts contain-obviously owing to the influence of unusually high and locally variable concentrations of insulin-a focally increased number of enlarged mitochondria, abundant glycogen and a smaller amount of neutral fat droplets. Furthermore, hepatocytes and cells looking like hepatocytes (hepato-cyte-like cells) with typically structured cytoplasmic beta(insulin)granules were found bordering the islet isografts. These results could be interpreted as an expression of arteficial or nonarteficial fusion of beta cells with hepatocytes, i.e. formation of hybrid cells (“in vivo hybridization”). Alternatively, they might reflect insulin uptake and storage in the hepatocytes. In addition, these findings suggest that contact between neonatal islet tissue and liver tissue could be a trigger for the in vivo transformation (modulation) of differentiated cells of similar embryonic development in the adult organism.  相似文献   

17.
Morphological (light microscopical, immunohistological and electron microscopical) findings in the recipient liver of rats with streptozotocin-induced diabetes, obtained 9 months after intraportal injection of neonatal isologous pancreatic islets, are described and their significance discussed. The results support the assumption of active ingrowth of nonmyelinated nerve fibers into the islet isografts. The hepatocytes surrounding the islet isografts contain--obviously owing to the influence of unusually high and locally variable concentrations of insulin--a focally increased number of enlarged mitochondria, abundant glycogen and a smaller amount of neutral fat droplets. Furthermore, hepatocytes and cells looking like hepatocytes (hepatocyte-like cells) with typically structured cytoplasmic beta (insulin) granules were found bordering the islet isografts. These results could be interpreted as an expression of artificial or nonartificial fusion of beta cells with hepatocytes, i.e. formation of hybrid cells ("in vivo hybridization"). Alternatively, they might reflect insulin uptake and storage in the hepatocytes. In addition, these findings suggest that contact between neonatal islet tissue and liver tissue could be a trigger for the in vivo transformation (modulation) of differentiated cells of similar embryonic development in the adult organism.  相似文献   

18.
19.
NOD (non-obese diabetic) mice develop type 1 diabetes mellitus spontaneously and with a strong similarity to the human disease. Differentiation and function of pancreas beta cells are regulated by a variety of hormones and growth factors, including the nerve growth factor (NGF). Gangliosides have multiple immunomodulatory activities with immunosuppressive properties, decreasing lymphoproliferative responses and modulating cytokine production. In the present study, serum, pancreas islets and spleen mononuclear cells from NOD mice treated with monosialic ganglioside GM1 (100 mg/kg/day) and the group control which received saline solution were isolated to investigate the proinflammatory cytokines (IL-1beta, IFN-gamma, IL-12, TNF-alpha), NGF and its high-affinity receptor TrkA, peri-islet Schwann cells components (GFAP, S100-beta) expression and the relationship with diabetes onset and morphological aspects. Our results suggest that GM1 administration to female NOD mice beginning at the 4th week of life is able to reduce the index of inflammatory infiltrate and consequently the expression of diabetes, modulating the expression of proinflammatory cytokines (IL-12, IFN-gamma, TNF-alpha and IL-1beta). Furthermore, GM1 increases GFAP, S-100beta and NGF in pancreas islets, factors involved in beta cell survival.  相似文献   

20.
Summary In the islets of the rat pancreas, steroid diabetes induced by triamcinolon-acetonid leads to degranulation of the B cells and glycogen infiltration. The glycogen cannot be satisfactorily detected using methods like the chromic acid technique according to Bauer, staining with Best's carmine, or the usually applied periodic acid-Schiff (PAS) reaction. Glycogen detection is improved, however, when lead tetraacetate is used in place of periodic acid as oxidizing agent. When combining the carbohydrate detection method with the peroxidase — antiperoxidase (PAP) method used for immunocytochemical detection of the various pancreatic islet hormones, paraffin sections reveal that glycogen is primarily localized in granulated B cells; the degranulated B cells also contain glycogen, though in smaller amounts. In contrast, the islet cells containing somatostatin, glucagon and pancreatic polypeptide are nearly free of glycogen.This study was supported by the Deutsche Forschungsgemeinschaft K1 426/2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号