首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently discovered thermophilic acidobacterium Candidatus Chloracidobacterium thermophilum is the first aerobic chlorophototroph that has a type-I, homodimeric reaction center (RC). This organism and its type-I RCs were initially detected by the occurrence of pscA gene sequences, which encode the core subunit of the RC complex, in metagenomic sequence data derived from hot spring microbial mats. Here, we report the isolation and initial biochemical characterization of the type-I RC from Ca. C. thermophilum. After removal of chlorosomes, crude membranes were solubilized with 0.1% (w/v) n-dodecyl β-D-maltoside, and the RC complex was purified by ion-exchange chromatography. The RC complex comprised only two polypeptides: the reaction center core protein PscA and a 22-kDa carotenoid-binding protein denoted CbpC. The absorption spectrum showed a large, broad absorbance band centered at ~483 nm from carotenoids as well as smaller Q(y) absorption bands at 672 and 812 nm from chlorophyll a and bacteriochlorophyll a, respectively. The light-induced difference spectra of whole cells, membranes, and the isolated RC showed maximal bleaching at 840 nm, which is attributed to the special pair and which we denote as P840. Making it unique among homodimeric type-I RCs, the isolated RC was photoactive in the presence of oxygen. Analyses by optical spectroscopy, chromatography, and mass spectrometry revealed that the RC complex contained 10.3 bacteriochlorophyll a(P), 6.4 chlorophyll a(PD), and 1.6 Zn-bacteriochlorophyll a(P)' molecules per P840 (12.8:8.0:2.0). The possible functions of the Zn-bacteriochlorophyll a(P)' molecules and the carotenoid-binding protein are discussed.  相似文献   

2.
Saccharomyces cerevisiae yeasts (lower eukaryotes) were shown to produce a protein exometabolite with reactivation activity. We demonstrated cross-effects of extracellular protein factors of adaptation to stress (heat and UV irradiation) in yeasts and Luteococcus casei bacteria. The possibility for isolation and partial purification of protein exometabolites from the culture liquid of yeasts and bacteria by similar methods, as well as the similarity of elution profiles for the active proteins in high-performance liquid chromatography, suggests that the proteins (or fragments thereot) of the organisms studied are homologous.  相似文献   

3.
Phototrophy, the conversion of light to biochemical energy, occurs throughout the Bacteria and plants, however, debate continues over how different phototrophic mechanisms and the bacteria that contain them are related. There are two types of phototrophic mechanisms in the Bacteria: reaction center type 1 (RC1) has core and core antenna domains that are parts of a single polypeptide, whereas reaction center type 2 (RC2) is composed of short core proteins without antenna domains. In cyanobacteria, RC2 is associated with separate core antenna proteins that are homologous to the core antenna domains of RC1. We reconstructed evolutionary relationships among phototrophic mechanisms based on a phylogeny of core antenna domains/proteins. Core antenna domains of 46 polypeptides were aligned, including the RC1 core proteins of heliobacteria, green sulfur bacteria, and photosystem I (PSI) of cyanobacteria and plastids, plus core antenna proteins of photosystem II (PSII) from cyanobacteria and plastids. Maximum likelihood, parsimony, and neighbor joining methods all supported a single phylogeny in which PSII core antenna proteins (PsbC, PsbB) arose within the cyanobacteria from duplications of the RC1-associated core antenna domains and accessory antenna proteins (IsiA, PcbA, PcbC) arose from duplications of PsbB. The data indicate an evolutionary history of RC1 in which an initially homodimeric reaction center was vertically transmitted to green sulfur bacteria, heliobacteria, and an ancestor of cyanobacteria. A heterodimeric RC1 (=PSI) then arose within the cyanobacterial lineage. In this scenario, the current diversity of core antenna domains/proteins is explained without a need to invoke horizontal transfer.This article contains online-only supplementary material.Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

4.
The photochemical reaction center (RC) complex of Roseiflexus castenholzii, which belongs to the filamentous anoxygenic phototrophic bacteria (green filamentous bacteria) but lacks chlorosomes, was isolated and characterized. The genes coding for the subunits of the RC and the light-harvesting proteins were also cloned and sequenced. The RC complex was composed of L, M, and cytochrome subunits. The cytochrome subunit showed a molecular mass of approximately 35 kDa, contained hemes c, and functioned as the electron donor to the photo-oxidized special pair of bacteriochlorophylls in the RC. The RC complex appeared to contain three molecules of bacteriochlorophyll and three molecules of bacteriopheophytin, as in the RC preparation from Chloroflexus aurantiacus. Phylogenetic trees based on the deduced amino acid sequences of the RC subunits suggested that R. castenholzii had diverged from C. aurantiacus very early after the divergence of filamentous anoxygenic phototrophic bacteria from purple bacteria. Although R. castenholzii is phylogenetically related to C. aurantiacus, the arrangement of its puf genes, which code for the light-harvesting proteins and the RC subunits, was different from that in C. aurantiacus and similar to that in purple bacteria. The genes are found in the order pufB, -A, -L, -M, and -C, with the pufL and pufM genes forming one continuous open reading frame. Since the photosynthetic apparatus and genes of R. castenholzii have intermediate characteristics between those of purple bacteria and C. aurantiacus, it is likely that they retain many features of the common ancestor of purple bacteria and filamentous anoxygenic phototrophic bacteria.  相似文献   

5.
Photosynthetic complexes in bacteria absorb light and undergo photochemistry with high quantum efficiency. We describe the isolation of a highly purified, active, reaction center-light-harvesting 1–PufX complex (RC–LH1–PufX core complex) from a strain of the photosynthetic bacterium, Rhodobacter sphaeroides, which lacks the light-harvesting 2 (LH2) and contains a 6 histidine tag on the H subunit of the RC. The complex was solubilized with diheptanoyl-sn-glycero-3-phosphocholine (DHPC), and purified by Ni-affinity, size-exclusion and ion-exchange chromatography in dodecyl maltoside. SDS-PAGE analysis shows the complex to be highly purified. The quantum efficiency was determined by measuring the charge separation (DQA → D+QA-) in the RC as a function of light intensity. The RC–LH1–PufX complex had a quantum efficiency of 0.95 ± 0.05, indicating full activity. The stoichiometry of LH1 subunits per RC was determined by two independent methods: (i) solvent extraction and absorbance spectroscopy of bacteriochlorophyll, and (ii) density scanning of the SDS-PAGE bands. The average stoichiometry from the two measurements was 13.3 ± 0.9 LH1/RC. The presence of PufX was observed in SDS-PAGE gels at a stoichiometry of 1.1 ± 0.1/RC. Crystals of the core complex have been obtained which diffract X-rays to 12 Å. A preliminary analysis of the space group and unit cell analysis indicated a P1 space group with unit cell dimensions of a = 76.3 Å, b = 137.2 Å, c = 137.5 Å; α = 60.0°, β = 89.95°, γ =90.02°.  相似文献   

6.
不同富集方法分离多环芳烃降解菌的比较研究   总被引:1,自引:0,他引:1  
多环芳烃是一类普遍存在的环境污染物。本研究探讨了普通富集法,固定化富集法以及巴斯德消毒后富集法三种途径从相同红树林土壤中分离菲降解茵的差异。通过平板培养和变性梯度凝胶电泳两种方法分析分离结果。上述方法分别获得以鞘氨醇单胞茵、分枝杆菌以及红球茵为优势菌群的群落,表明分离方法对多环芳烃降解菌多样性的研究是一种重要的影响因素。  相似文献   

7.
Photosynthesis is an ancient process on Earth. Chemical evidence and recent fossil finds indicate that cyanobacteria existed 2.5-2.6 billion years (Ga) ago, and these were certainly preceded by a variety of forms of anoxygenic photosynthetic bacteria. Carbon isotope data suggest autotrophic carbon fixation was taking place at least a billion years earlier. However, the nature of the earliest photosynthetic organisms is not well understood. The major elements of the photosynthetic apparatus are the reaction centers, antenna complexes, electron transfer complexes and carbon fixation machinery. These parts almost certainly have not had the same evolutionary history in all organisms, so that the photosynthetic apparatus is best viewed as a mosaic made up of a number of substructures each with its own unique evolutionary history. There are two schools of thought concerning the origin of reaction centers and photosynthesis. One school pictures the evolution of reaction centers beginning in the prebiotic phase while the other school sees reaction centers evolving later from cytochrome b in bacteria. Two models have been put forth for the subsequent evolution of reaction centers in proteobacteria, green filamentous (non-sulfur) bacteria, cyanobacteria, heliobacteria and green sulfur bacteria. In the selective loss model the most recent common ancestor of all subsequent photosynthetic systems is postulated to have contained both RC1 and RC2. The evolution of reaction centers in proteobacteria and green filamentous bacteria resulted from the loss of RC1, while the evolution of reaction centers in heliobacteria and green sulfur bacteria resulted from the loss of RC2. Both RC1 and RC2 were retained in the cyanobacteria. In the fusion model the most recent common ancestor is postulated to have given rise to two lines, one containing RC1 and the other containing RC2. The RC1 line gave rise to the reaction centers of heliobacteria and green sulfur bacteria, and the RC2 line led to the reaction centers of proteobacteria and green filamentous bacteria. The two reaction centers of cyanobacteria were the result of a genetic fusion of an organism containing RC1 and an organism containing RC2. The evolutionary histories of the various classes of antenna/light-harvesting complexes appear to be completely independent. The transition from anoxygenic to oxygenic photosynthesis took place when the cyanobacteria learned how to use water as an electron donor for carbon dioxide reduction. Before that time hydrogen peroxide may have served as a transitional donor, and before that, ferrous iron may have been the original source of reducing power.  相似文献   

8.
低聚木糖分离纯化的研究进展   总被引:4,自引:0,他引:4  
综述了低聚木糖分离纯化的研究进展。低聚木糖是一种非消化性寡糖 ,能选择性增殖肠道内双歧杆菌 ,可广泛应用于食品工业和饲料工业。低聚木糖的分离纯化技术主要包括层析分离技术 (包括凝胶过滤层析、离子交换层析和吸附层析 )和膜分离技术 (包括超滤、纳滤和反渗透 )。低聚木糖的提纯主要采用膜分离技术和层析分离技术 ,低聚木糖单一组分的分离主要采用凝胶过滤层析和吸附层析  相似文献   

9.
Retrocyclin‐101 (RC101) and Protegrin‐1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV‐1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His‐tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%–38% and 17%~26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa–like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6‐fold higher yield of RC101 than purification by affinity chromatography using His‐tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies.  相似文献   

10.
Pulse labeled DNA was isolated from EHRLICH ascites cells using different methods. Depending on the isolation procedure, the nascent DNA separated from the bulk DNA by nitrocellulose column chromatography was either entirely double stranded or contained single stranded constituents. This seems to be due to the destabilized state of the nascent DNA within a living cell causing the partial conversion of newly replicated DNA to the single stranded form when certain DNA isolation methods are applied. It is suggested that the nascent DNA separated by nitrocellulose chromatography is normally double stranded.  相似文献   

11.
The PufX membrane protein is essential for photosynthetic growth of Rhodobacter sphaeroides wild-type cells. PufX is associated with the reaction center-light harvesting 1 (RC-LH1) core complex and plays a key role in lateral ubiquinone/ubiquinol transfer. We have determined the PufX/RC stoichiometry by quantitative Western blot analysis and RC photobleaching. Independent of copy number effects and growth conditions, one PufX molecule per RC was observed in native membranes as well as in detergent-solubilized RC-LH1 complexes which had been purified over sucrose gradients. Surprisingly, two gradient bands with significantly different sedimentation coefficients were found to have a similar subunit composition, as judged by absorption spectroscopy and protein gel electrophoresis. Gel filtration chromatography and electron microscopy revealed that these membrane complexes represent a monomeric and a dimeric form of the RC-LH1 complex. Since PufX is strictly required for the isolation of dimeric core complexes, we suggest that PufX has a central structural role in forming dimeric RC-LH1 complexes, thus allowing efficient ubiquinone/ubiquinol exchange through the LH1 ring surrounding the RC.  相似文献   

12.
Sanjukta Parui 《Grana》2013,52(5):311-315
The pollen of Ricinus communis L., a potentially allergenic plant, was extracted to identify the allergenic determinants responsible for causing respiratory disorders. The soluble proteins were extracted and subjected to ammonium sulphate precipitation at 80% saturation and the total protein separated on 12% SDS-Polyacrylamide gel. In order to avoid the time consuming and expensive biochemical methods of column chromatography, each band was directly recovered from the gel by electroelution and the allergenic proteins identified directly by skin tests, without the necessity of Phadezym RAST or ELISA inhibition by reaction with serum IgE, the general procedure to identify the allergens. The fourth and the fifth band in the protein profile of R. communis pollen, RC4 (77 kD) and RC5 (66 kD) were the two major allergenic components. RC3 (91 kD) also induced a considerable amount of reactivity in sensitive patients. Contrary to the earlier reports of protein bands of R. communis ranging from 14 kD to 70 kD, 4 bands above 70 kD i.e. RC1 (123 kD), RC2 (97 kD), RC3 (91 kD) and RC4 (77 kD) are reported here for the first time. Immunodiffusion analysis with pooled sera of patients sensitive to the total extract also revealed similar results.  相似文献   

13.
塔里木盆地荒漠盐碱生境嗜盐碱细菌的初步研究   总被引:6,自引:0,他引:6  
为了探索塔里木盆地荒漠盐碱生境嗜(耐)盐碱细菌的分离方法,采用纯培养技术探讨了不同土壤预处理方法、盐度及不同分离培养基对不同盐度土壤中嗜(耐)盐碱细菌分离效果的影响。结果表明:高盐土壤嗜(耐)盐碱细菌的多样性高于中度盐分和低度盐分的土壤,而总菌落数则相反;半量的Horikoshi I(NaCl 10%~15%)为3种土样最佳的分离培养基,碱性复合培养基和高盐碱培养基A次之;分离嗜(耐)盐碱细菌以获得资源为主要目的时,富集培养法最佳。以反映土壤嗜(耐)盐碱细菌生态分布而言,用土壤悬液法;塔里木盆地嗜(耐)盐碱细菌生长盐浓度及pH值范围较宽,最适生长盐浓度为10%左右,pH值多为8—10左右。分离到的120株嗜(耐)盐碱细菌中,有33株为嗜盐碱细菌,占分离菌株的27.5%。  相似文献   

14.
The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method “rapid histone purification” (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.  相似文献   

15.
Study of the relative proportions of ribosomes and polysomes released by a standardized lysing procedure from isogenic RC(str) and RC(rel) strains of Escherichia coli shows that a 20-min period of amino acid starvation of RC(str) bacteria reduces the fraction of ribosomes recovered in polysomes to about 60% of its value characteristic of exponentially growing cells: A similar starvation treatment of the RC(rel) bacteria causes no appreciable reduction in the fraction of polysomal ribosomes.  相似文献   

16.
Media and methods suitable for the isolation of iron-depositing and iron-reducing bacteria from aquatic habitats are described. Higher MPN estimates were obtained, and a greater variety of bacteria isolated, when the media were made up in a semi-solid form with a final agar concentration of 0.25%.  相似文献   

17.
The present paper describes a simple enrichment technique which enables rapid and selective isolation of diverse zoosporic actinomycete genera directly from soil and plant litter. This technique, designated the rehydration and centrifugation (RC) method, consists of immersing the air-dried source material in 10 mM phosphate buffer containing 10% soil extract, letting the preparation stand at 30 °C for 90 min, followed by centrifugation of the fluid at 1,500×g for 20 min. Portions of the supernatant containing actinomycete zoospores are plated on the humic acid-vitamin agar which is supplemented with nalidixic acid and trimethoprim as the selective inhibitors for Gram-negative bacteria and bacilli. The phosphate buffer-soil extract solution significantly promoted liberation of motile zoospores from the source material. The centrifugation stage greatly eliminated streptomycetes and other non-motile actinomycetes from the liquid phase, thereby facilitating selective growth of rare, motile actinomycetes on the isolation plates subsequent to inoculation. Ten different soil and leaf-litter samples, taken from fields, forests, and stream banks, were examined. The RC method consistently achieved preferential isolation of motile actinomycetes in all samples, which accounted for 37–86% of the total microbial population recovered. The most frequently isolated motile actinomycetes were Actinoplanes and Dactylosporangium. Strains of Actinokineospora, Catenuloplanes and Kineosporia were also recovered, depending on the nature of the samples examined. Other motile actinomycetes that were occasionally isolated in small numbers included Actinosynnema, Geodermatophilus and Sporichthya.  相似文献   

18.
The M-subunit primary structure of the reaction centre (RC) from Chloroflexus aurantiacus composed of 306 amino acid residues has been determined by parallel analysis of the protein and corresponding DNA. The blocked N-terminus as well as replacement of the essential histidine liganding Mg of an accessory bacteriochlorophyll in purple bacteria by leucine distinguishes the M-subunit of Chloroflexus RC from that of purple bacteria.  相似文献   

19.
The review concerns isolation and purification of nucleases by affinity chromatography. Different stationary ligands and the methods for their immobilization on supports are described, along with diverse eluents and various procedures for a nuclease detachment from the affinity sorbents. The data on the affinity chromatography application for measuring the dissociation constants of the enzyme complexes with either immobilized or soluble ligands are compiled.  相似文献   

20.
Catechols are co-planar cis-diols known to form stable, isolable complexes with borate under weakly basic conditions. We exploited this chemistry and developed a boronate affinity chromatography for isolating catechol siderophores. The method was applied to the isolation of chrysobactin, enterobactin, and an unknown catechol siderophore produce by Erwinia carotovora subsp. carotovora W3C105. Yields of chrysobactin and enterobactin purified by boronate affinity chromatography were at least two-fold greater than those achieved through alternate methods. The unknown catechol produced by E. carotovora subsp. carotovora W3C105 was isolated by boronate affinity chromatography and shown to be identical to chrysobactin. Boronate affinity chromatography enabled separation of catechol from its rust-colored decomposition products, and simultaneous isolation of catechol and hydroxamate siderophores. Boronate affinity chromatography is a rapid and efficient method for purifying catechol siderophores from bacterial culture supernatants  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号