首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polynucleotide helix d(T)n.d(A)n.d(T)n is the only deoxypolynucleotide triple helix for which a structure has been published, and it is generally assumed as the structural basis for studies of DNA triplexes. The helix has been assigned to an A-form conformation with C3'-endo sugar pucker by Arnott and Selsing [1974; cf. Arnott et al. (1976)]. We show here by infrared spectroscopy in D2O solution that the helix is instead B-form and that the sugar pucker is in the C2'-endo region. Distamycin A, which binds only to B-form and not to A-form helices, binds to the triple helix without displacement of the third strand, as demonstrated by CD spectroscopy and gel electrophoresis. Molecular modeling shows that a stereochemically satisfactory structure can be build using C2'-endo sugars and a displacement of the Watson-Crick base-pair center from the helix axis of 2.5 A. Helical constraints of rise per residue (h = 3.26 A) and residues per turn (n = 12) were taken from fiber diffraction experiments of Arnott and Selsing (1974). The conformational torsion angles are in the standard B-form range, and there are no short contacts. In contrast, we were unable to construct a stereochemically allowed model with A-form geometry and C3'-endo sugars. Arnott et al. (1976) observed that their model had short contacts (e.g., 2.3 A between the phosphate-dependent oxygen on the A strand and O2 in the Hoogsteen-paired thymine strand) which are generally known to be outside the allowed range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Three types of DNA: approximately 2700 bp polydeoxyguanylic olydeoxycytidylic acid [poly(dG)-poly(dC)], approximately 2700 bp polydeoxyadenylic polydeoxythymidylic acid [poly(dA)-poly(dT)] and 2686 bp linear plasmid pUC19 were deposited on a mica surface and imaged by atomic force microscopy. Contour length measurements show that the average length of poly(dG)-poly(dC) is approximately 30% shorter than that of poly(dA)-poly(dT) and the plasmid. This led us to suggest that individual poly(dG)-poly(dC) molecules are immobilized on mica under ambient conditions in a form which is likely related to the A-form of DNA in contrast to poly(dA)-poly(dT) and random sequence DNA which are immobilized in a form that is related to the DNA B-form.  相似文献   

3.
The basic assumption of Dickerson and Kopka (J. Biomole. Str. Dyns. 2, 423, 1985) that the conformation of poly(dA).poly(dT) in solution is identical to the AT rich region of the single crystal structure of the Dickerson dodecamer is not supported by any experimental data. In poly(dA).poly(dT), NOE and Raman studies indicate that the dA and dT units are conformationally equivalent and display the (anti-S-type sugar)-conformation; incorporation of this nucleotide geometry into a double helix leads to a conventional regular B-helix in which the width of the minor groove is 8A. The derived structure is consistent with all available experimental data on poly(dA).poly(dT) obtained under solution conditions. In the crystal structure of the dodecamer, the dA and dT units have distinctly different conformations-dA residues adopt (anti, S-type sugar pucker), while dT residues belong to (low anti, N-type sugar pucker). These different conformations of the dA and dT units along with the large propeller twist can be accommodated in a double helix in which the minor groove is shrunk from 8A to less than 4A. In the conventional right handed B-form of poly(dA).poly(dT) with the 8A wide minor groove, netropsin has to bind asymmetrically along the dA strand to account for the NOE and chemical shift data and to generate a stereochemically sound structure (Sarma et al, J. Biomole. Str. Dyns. 2, 1085, 1985).  相似文献   

4.
In the crystal, d(GGGATCCC)2 forms an A-DNA double helix as known from a single crystal X-ray diffraction study. Accordingly, in the Raman spectra of crystals the A-family marker bands at 664, 705, 807 and 1101 cm-1 and the spectral characteristics in the region 1200 to 1500 cm-1 clearly demonstrate the A-form as the dominant conformation. Bands at 691, 850, and 1080 cm-1, however, indicate that a minor fraction of the octamer molecules in the crystal is in an unusual, still not unequivocally identified conformation possibly belonging to the B-family. In solution, the octamer is in B-like conformation as shown by the presence of B-DNA Raman marker bands at 685, 837, 1094 and 1421 cm-1. Molecular modelling techniques lead to three structures with slightly different B-form geometries as the lowest energies models when a sigmoidal dielectric function with the bulk dielectric constant epsilon = 78 and the value q = -0.5e for the effective phosphate charges was used in the calculations. An A-form structure bearing a strong resemblance to the experimentally determined crystal structure becomes the lowest energy model structure when the electrostatic parameters are changed to epsilon = 30 and q = -0.25e, respectively.  相似文献   

5.
One-dimensional nuclear Overhauser effect (NOE) in nuclear magnetic resonance spectroscopy along with stereochemically sound model building was employed to derive the structure of the hybrid poly(rA).poly(dT) in solution. Extremely strong NOE was observed at AH2' when AH8 was presaturated; strong NOEs were observed at TH2'TH2' when TH6 was presaturated; in addition the observed NOEs at TH2' and TH2' were nearly equal when TH6 was presaturated. There was no NOE transfer to AH3' from AH8 ruling out the possibility of (C-3'-endo, low anti chi approximately equal to 200 degrees to 220 degrees) conformation for the A residues. The observed NOE data suggest that the nucleotidyl units in both rA and dT strands have equivalent conformations: C-2'-endo/C-1'-exo, anti chi approximately equal to 240 degrees to 260 degrees. Such a nucleotide geometry for rA/dT is consistent with a right-handed B-DNA model for poly(rA).poly(dT) in solution in which the rA and dT strands are conformationally equivalent. Molecular models were generated for poly(rA).poly(dT) in the B-form based upon the geometrical constraints as obtained from the NOE data. Incorporation of (C-2'-endo pucker, chi congruent to 240 degrees to 260 degrees) into the classical B-form resulted in severe close contacts in the rA chain. By introducing base-displacement, tilt and twist along with concomitant changes in the backbone torsion angles, we were able to generate a B-form for the hybrid poly(rA).poly(dT) fully consistent with the observed NOE data. In the derived model the sugar pucker is C-1'-exo, a minor variant of C-2'-endo and the sugar base torsion is 243 degrees, the remaining torsion angles being: epsilon = 198 degrees, xi = 260 degrees, alpha = 286 degrees, beta = 161 degrees and gamma = 72 degrees; this structure is free of any steric compression and indicates that it is not necessary to switch to C-3'-endo pucker for rA residues in order to accommodate the 2'-OH group. The structure that we have proposed for the polynucleotide RNA-DNA hybrid in solution is in complete agreement with that proposed for a hexamer hybrid in solution from NOE data and is inconsistent with the heteronomous model proposed for the fibrous state.  相似文献   

6.
The crystal structure of the chimerical decamer d(CCACTAGTG)r(G), bearing a 3′-terminal ribo-guanidine, has been solved and refined at 1.8 Å resolution (R-factor 16.6%; free R-factor 22.8%). The decamer crystallizes in the orthorhombic space group P212121 with unit cell constants a = 23.90 Å, b = 45.76 Å and c = 49.27 Å. The structure was solved by molecular replacement using the coordinates of the isomorphous chimera r(GCG)d(TATACGC). The final model contains one duplex and 77 water molecules per asymmetric unit. Surprisingly, all residues adopt a conformation typical for A-form nucleic acids (C3′-endo type sugar pucker) although the all-DNA analog, d(CCACTAGTGG), has been crystallized in the B-form. Comparing circular dichroism spectra of the chimera and the corresponding all-DNA sequence reveals a similar trend of the former molecule to adopt an A-like conformation in solution. The results suggest that the preference of ribonucleotides for the A-form is communicated into the 5′-direction of an oligonucleotide strand, although direct interactions of the 2′-hydroxyl group can only be discerned with nucleotides in the 3′-direction of a C3′-endo puckered ribose. These observations imply that forces like water-mediated contacts, the concerted motions of backbone torsion angles, and stacking preferences, are responsible for such long-range influences. This bi-directional structural communication originating from a ribonucleotide can be expected to contribute to the stability of the A-form within all-RNA duplexes.  相似文献   

7.
Abstract

The basic assumption of Dickerson and Kopka (J. Biomole. Str. Dyns. 2, 423, 1985) that the conformation of poly(dA)·poly(dT) in solution is identical to the AT rich region of the single crystal structure of the Dickerson dodecamer is not supported by any experimental data. In poly(dA)·poly(dT), NOE and Raman studies indicate that the dA and dT units are conformationally equivalent and display the (anti-S-type sugar)-conformation; incorporation of this nucleotide geometry into a double helix leads to a conventional regular B-helix in which the width of the minor groove is 8A. The derived structure is consistent with all available experimental data on poly(dA)·poly(dT) obtained under solution conditions. In the crystal structure of the dodecamer, the dA and dT units have distinctly different conformations—dA residues adopt (anti, S-type sugar pucker), while dT residues belong to (low anti, N-type sugar pucker). These different conformations of the dA and dT units along with the large propeller twist can be accommodated in a double helix in which the minor groove is shrunk from 8A to less than 4A. In the conventional right handed B-form of poly(dA)·poly(dT) with the 8A wide minor groove, netropsin has to bind asymmetrically along the dA strand to account for the NOE and chemical shift data and to generate a stereochemically sound structure (Sarma et al, J. Biomole. Str. Dyns. 2, 1085, 1985).  相似文献   

8.
In this paper we present a theoretical treatment of triplex B type DNA hydration using normal mode calculation techniques. Discrete solvent is added as spines of hydration in the Watson-Crick and Crick-Hoogsteen grooves as well as water bridges between the Phosphate groups. The effect of binding the discrete structural waters on the normal mode of vibration of the system was studied by introducing a parameter, Xw, that is proportional to the degree of water binding and inversely proportional to the relative humidity (RH) of the system. We examined the variation of the dipole moments of characteristic modes with Xw. The results show that there is a direct relationship between the degree of binding of the water molecules to the atoms in the triple helix, the relative humidity of the system and the conformation and stability of the triple helix. At high RH and Xw = 0:0 the triple helix has mostly B type conformation characteristics, with C'2 -endo sugars. The emergence of normal modes of vibration characteristic to the A type conformation (C'3 - endo sugars) at Xw = 0:4 and 60% RH indicates a conformational shift towards A-type for some of the sugars between Xw = 0.2 (80% RH) and Xw = 0.4 (60% RH). These results are in agreement with the "economy of hydration hypothesis" of Saenger (Saenger et al., 1986) which maintains that the main difference in the hydration of A- and B- forms of DNA is the presence of water bridges between adjacent Phosphate groups in the low-hydration A-form but not in the B- form. Free energy calculations for the triplex DNA with structural waters show that there is a minimum of the free energy at Xw = 0.2 and the free energy increases with Xw and becomes larger than the free energy of the B conformation without structural waters for Xw equal to and larger than 0.4. This result indicates that the B conformation is more stable with bound structural water molecules (for degrees of water binding that are not over 20% higher than the degree of binding between bulk water molecules). The structural water molecules are bound much tighter in the A conformation than in the B conformation. The model predicts that the B to A transition occurs at higher relative humidities in D2O than in H2O. Part of these results (Dadarlat, 1997) have been subsequently confirmed by the experimental work and MD simulations of Ouali (Ouali et al., 1997). The experimental results showed that the N-type sugars corresponding to the A conformation are clearly detected below 75% RH.  相似文献   

9.
C A Grygon  T G Spiro 《Biochemistry》1989,28(10):4397-4402
Raman spectra are reported for distamycin, excited at 320 nm, in resonance with the first strong absorption band of the chromophore. Qualitative band assignments to pyrrole ring and amide modes are made on the basis of frequency shifts observed in D2O. When distamycin is dissolved in dimethyl sulfoxide or dimethylformamide, large (30 cm-1) upshifts are seen for the band assigned to amide I, while amides II and III shift down appreciably. Similar but smaller shifts are seen when distamycin is bound to poly(dA-dT) and poly(dA)-poly(dT). Examination of literature data for N-methylacetamide in various solvents shows that the amide I frequencies correlate well with solvent acceptor number but poorly with solvent donor number. This behavior implies that acceptor interactions with the C = O group are more important than donor interactions with the N-H group in polarizing the amide bond and stabilizing the zwitterionic resonance form. The resonance Raman spectra therefore imply that the distamycin C = O groups, despite being exposed to solvent, are less strongly H-bonded in the polynucleotide complexes than in aqueous distamycin, perhaps because of orienting influences of the nearby backbone phosphate groups. In this respect, the poly(dA-dT) and poly(dA)-poly(dT) complexes are the same, showing the same RR frequencies. Resonance Raman spectra were also obtained at 200-nm excitation, where modes of the DNA residues are enhanced. The spectra were essentially the same with and without distamycin, except for a perceptable narrowing of the adenine modes of poly(dA-dT), suggesting a reduction in conformational flexibility of the polymer upon drug binding.  相似文献   

10.
J E Herrera  J B Chaires 《Biochemistry》1989,28(5):1993-2000
Circular dichroism and UV absorbance spectroscopy were used to monitor and characterize a premelting conformational transition of poly(dA)-poly(dT) from one helical form to another. The transition was found to be broad, with a midpoint of tm = 29.9 degrees C and delta HVH = +19.9 kcal mol-1. The transition renders poly(dA)-poly(dT) more susceptible to digestion by DNase I and facilitates binding of the intercalator daunomycin. Dimethyl sulfoxide was found to perturb poly(dA)-poly(dT) structure in a manner similar to temperature. These combined results suggest that disruption of bound water might be linked to the observed transition. A thermodynamic analysis of daunomycin binding to poly(dA)-poly(dT) shows that antibiotic binding is coupled to the polynucleotide conformational transition. Daunomycin binding renders poly(dA)-poly(dT) more susceptible to DNase I digestion at low binding ratios, in contrast to the normal behavior of intercalators, indicating that antibiotic binding alters the conformation of the polynucleotide. The unusual thermodynamic profiles previously observed for the binding of many antibiotics to poly(dA)-poly(dT) can be explained by our results as arising from the coupling of ligand binding to the polynucleotide conformational transition. Our data further suggest a physical basis for the temperature dependence of DNA bending.  相似文献   

11.
In order to obtain a molecular picture of the A and B forms of a DNA subunit, potential energy calculations have been made for dGpdC with C(3′)-endo and C(2′)-endo [or C(3′)-exo] sugar puckerings. These are compared with results for GpC. The global minima for dGpdC and GpC are almost identical. They are like A-form duplex DNA and RNA, respectively, with bases anti, the ω′, ω angle pair near 300°, 280°, and sugar pucker C(3′)-endo. For dGpdC, a B-form helical conformer, with sugar pucker C(2′)-endo and ω′ = 257°, ω = 298°, is found only 0.4 kcal/mol above the global minimum. A second low-energy conformation (2.3 kcal/mol) has ω′ = 263°, ω = 158° and ψ near 180°. This has dihedral angles like the original Watson–Crick model of the double helix. In contrast, for GpC, the C(2′)-endo B form is 6.9 kcal/mol above the global minimum. These theoretical results are consistent with experimental studies on DNA and RNA fibers. DNA fibers exist in both A and B forms, while RNA fibers generally assume only the A form. A low-energy conformation unlike the A or B forms was found for both dGpdC and GpC when the sugars were C(3′)-endo. This conformation—ω′,ω near 20°,80°—was not observed for C(2′)-endo dGpdC. Energy surface maps in the ω′,ω plane showed that C(2′)-endo dGpdC has one low-energy valley. It is in the B-form helical region (ω′ ~ 260°, ω ~ 300). When the sugar pucker is C(3′)-endo, dGpdC has two low-energy regions: the A-form helical region and the region with the minimum at ω′ = 16°, ω = 85°.  相似文献   

12.
The hetero duplex molecule, r(CGCA)d(AAAAAGCG):d(CGCTTTTTTGCG) which corresponds to Okazaki fragment was synthesized and its molecular structure has been analyzed by NMR study. The RNA strand of RNA-DNA hybrid region adopts A-form and DNA strand of the same region deviates from the standard B-form. The conformation of DNA-DNA duplex segment belongs to B-form. The hybrid-DNA duplex junction shows a structural discontinuities, A-B junction. The same conformational characteristic of oligo(dA): oligo(dT) tract as that of DNA oligomer which has same base sequence has been observed.  相似文献   

13.
Fourier Transform Infrared Spectra of triple stranded polynucleotides containing homopurine dA or rA and homopyrimidine dT or rU strands have been obtained in H2O and D2O solutions as well as in hydrated films at various relative humidities. The spectra are interpreted by comparison with those of double stranded helixes with identical base and sugar composition. The study of the spectral domain corresponding to in-plane double bond stretching vibrations of the bases shows that whatever the initial duplex characterized by a different IR spectrum (A family form poly rA.poly rU, heternomous form poly rA.poly dT, B family form poly dA.poly dT), the triplexes present a similar IR spectrum reflecting similar base interactions. A particular attention is devoted to the 950-800 cm-1 region which contains marker bands of the sugar conformation in the nucleic acids. In solution the existence of only N (C3'endo-A family form) type of sugar pucker is detected in poly rU.poly rA.poly rU and poly dt.poly rA.poly rU. On the contrary absorption bands characteristic of both N (C3'endo-A family form) and S (C2'endo-B family form) type sugars are detected for poly rU.poly rA.poly dT, poly rU.poly dA.poly dT and poly dT.poly rA.poly dT. Finally mainly S (C2'endo-B family form) type sugars are observed in poly dT.poly dA.poly dT.  相似文献   

14.
Abstract

The double helical structure of the self-complementary DNA-RNA-DNA hybrid d(CG)r(CG) d(CG) was studied in solution by 500 MHz 1H-NMR spectroscopy. The non-exchangeable base protons and the (deoxy)ribose H1′, H2′ and H2″ protons were unambiguously assigned using 2D-J-correlated (COSY) and 2D-NOE (NOESY) spectroscopy techniques. A general strategy for the sequential assignment of 1H-NMR spectra of (double) helical DNA and RNA fragments by means of 2D-NMR methods is presented.

Conformational analysis of the sugar rings of d(CG)r(CG)d(CG) at 300 K shows that the central ribonucleotide part of the helix adopts an A-type double helical conformation. The 5′- and 3′-terminal deoxyribose base pairs, however, take up the normal DNA-type conformation. The A-to-B transition in this molecule involves only one (deoxyribose) base pair. It is shown that this A-to-B conformational transition can only be accomodated by two specific sugar pucker combinations for the junction base pair, i.e. N·S (C3′-endo-C2′-endo, 60%, where the pucker given first is that assigned to the junction nucleotide residue of the strand running 5′ → 3′ from A-RNA to B-DNA) and S·S (C2′-endo-C2′-endo, 40%).  相似文献   

15.
R W Behling  D R Kearns 《Biochemistry》1986,25(11):3335-3346
The structure of poly(dA).poly(dT) in aqueous solution has been studied by using 1H two-dimensional nuclear Overhauser effect (2D NOE) spectroscopy and relaxation rate measurements on the imino and nonexchangeable protons. The assignments of the 1H resonances are determined from the observed cross-relaxation patterns in the 2D NOE experiments. The cross-peak intensities together with the measured relaxation rates show that the purine and pyrimidine strands in poly(dA).poly(dT) are equivalent in aqueous solution. The results are consistent with a right-handed B-form helix where the sugars on both strands are in the C2'-endo/anti configuration. These observations are inconsistent with a proposed heteronomous structure for poly(dA).poly(dT) [Arnott, S., Chandrasekaran, R., Hall, I. H., & Puigjaner, L. C. (1983) Nucleic Acids Res. 11, 4141-4155]. The measured relaxation rates also show that poly(dA).poly(dT) has fast, large-amplitude local internal motions (+/- 20-25 degrees) in solution and that the amplitudes of the base and sugar motions are similar. The motion of the bases in poly(dA).poly(dT) is also similar to that previously reported for poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) [Assa-Munt, N., Granot, J., Behling, R. W., & Kearns, D. R. (1984) Biochemistry 23, 944-955; Mirau, P. A., Behling, R. W., & Kearns, D. R. (1985) Biochemistry 24, 6200-6211].  相似文献   

16.
The DNA duplex d-(CATGGGCCCATG)2 has been studied in solution by FTIR, NMR and CD. The experimental approaches have been complemented by series of large-scale unrestrained molecular dynamics simulation with explicit inclusion of solvent and counterions. Typical proton-proton distances extracted from the NMR spectra and the CD spectra are completely in agreement with slightly modified B-DNA. By molecular dynamics simulation, starting from A-type sugar pucker, a spontaneous repuckering to B-type sugar pucker was observed. Both experimental and theoretical approaches suggest for the dodecamer d-(CATGGGCCCATG)2 under solution conditions puckering of all 2'-deoxyribose residues in the south conformation (mostly C2'-endo) and can exclude significant population of sugars in the north conformation (C3'-endo). NMR, FTIR and CD data are in agreement with a B-form of the dodecamer in solution. Furthermore, the duplex shows a cooperative B-A transition in solution induced by addition of trifluorethanol. This contrasts a recently published crystal structure of the same oligonucleotide found as an intermediate between B- and A-DNA where 23 out of 24 sugar residues were reported to adopt the north (N-type) conformation (C3'-endo) like in A-DNA (Ng, H. L., Kopka, M. L. and Dickerson, R. E., Proc. Natl. Acad. Sci. U S A 97, 2035-2039 (2000)). The simulated structures resemble standard B-DNA. They nevertheless show a moderate shift towards A-type stacking similar to that seen in the crystal, despite the striking difference in sugar puckers between the MD and X-ray structures. This is in agreement with preceding MD reports noticing special stacking features of G-tracts exhibiting a tendency towards the A-type stacking supported by the CD spectra also reflecting the G-tract stacking. MD simulations reveal several noticeable local conformational variations, such as redistribution of helical twist and base pair roll between the central GpC steps and the adjacent G-tract segments, as well as a substantial helical twist variability in the CpA(TpG) steps combined with a large positive base pair roll. These local variations are rather different from those seen in the crystal.  相似文献   

17.
The structure and physical properties of 2'-sugar substituted O -(2-methoxyethyl) (MOE) nucleic acids have been studied using molecular dynamics simulations. Nanosecond simulations on the duplex MOE[CCAACGTTGG]-r[CCAACGUUGG] in aqueous solution have been carried out using the particle mesh Ewald method. Parameters for the simulation have been developed from ab initio calculations on dimethoxyethyl fragments in a manner consistent with the AMBER 4.1 force field database. The simulated duplex is compared with the crystal structure of the self-complementary duplex d[GCGTATMOEACGC]2, which contains a single modification in each strand. Structural details from each sequence have been analyzed to rationalize the stability imparted by substitution with 2'- O -(2-methoxyethyl) side chains. Both duplexes have an A-form structure, as indicated by several parameters, most notably a C3' endo sugar pucker in all residues. The simulated structure maintains a stable A-form geometry throughout the duration of the simulation with an average RMS deviation of 2.0 A from the starting A-form structure. The presence of the 2' substitution appears to lock the sugars in the C3' endo conformation, causing the duplex to adopt a stable A-form geometry. The side chains themselves have a fairly rigid geometry with trans , trans , gauche +/- and trans rotations about the C2'-O2', O2'-CA', CA'-CB' and CB'-OC' bonds respectively.  相似文献   

18.
The interaction of DNA and RNA with Cu(II), Mg(II), [Co(NH3)6]3+ [Co(NH3)5Cl]2+ chlorides and, cis- and trans-Pt(NH3)2Cl2 (CIS-DDP, trans-DDP) has been studied by Fourier Transform Infrared (FT-IR) spectroscopy and a correlation between metal-base binding and conformational transitions in the sugar pucker has been established. It has been found that RNA did not change from A-form on complexation with metals, whereas DNA exhibited a B to Z transition. The marker bands for the A-form (C3'-endo-anti conformation) were found to be near 810-816 cm-1, while the bands at 825 and 690 cm-1 are marker bands for the B-conformation (C2'-endo, anti). The B to Z (C3'-endo. syn conformation) transition is characterized by the shift of the band at 825 cm-1 to 810-816 cm-1 and the shift of the guanine band at 690 cm-1 to about 600-624 cm-1.  相似文献   

19.
The structures of poly(dA-dT), poly(dA-dBr5U) and of poly(dA).poly(dT) have been investigated in solution and in fibers, by Raman spectroscopy. Both the alternating poly(dA-dT), poly(dA-dBr5U) and non-alternating poly(dA).poly(dT) exhibit, in the region of sugar phosphate backbone vibrations, two bands of almost equal intensity at about 841 cm-1 and 817 cm-1. The analysis of the characteristic bands of thymine residues that are sensitive to sugar puckers gives indication of a significant displacement from the C(2')-endo conformer suggesting the adoption of alternative conformers such as O(4')-endo. In contrast, the diagnostic Raman bands for the sugar pucker of adenine residues suggest, instead, predominant adoption of C(2')-endo conformations. These Raman results are compatible with rapid dynamic changes of sugar puckers between C(2')-endo and O(4')-endo for the thymidine (and uridine) residues, whereas in adenine residues the sugar puckers fluctuate around the C(2')-endo pucker in all synthetic DNA molecules studied. Molecular dynamics simulations, performed on six different starting models using two distance-dependent dielectric functions epsilon(r) = 4 r and a sigmoidal dependence), all gave similar dynamic behavior in agreement with these Raman data and their interpretation. The mean calculated pseudorotation phases of the adenine residues are systematically higher (around C(2')-endo) than those of the thymine residues (close to O(4')-endo-C(1')-exo). Besides, the mean lifetimes of the thymine residues are 1.5 to 2.0-fold higher in the O(4')-endo than in the C(2')-endo domain, while those of the adenine residues are two to threefold higher in the C(2')-endo than in the O(4')-endo domain. In the Raman spectra of the alternating poly(dA-dBr5U), the splitting of a band into two components arising from the two contributions of ApBr5U and Br5UpA provides strong evidence for a repeating dinucleotide structure in solution. The calculated twist values averaged over the simulation runs are also systematically higher in the 5'T-A3' step (39 degrees) than in the 5'A-T3' step (33 degrees). Simultaneously, the calculated roll values are positive in the 5'T-A3' step (6 degrees) and negative in the 5'A-T3' step (-9 degrees), while the propeller twist values are about the same (-11 degrees to -16 degrees). On the other hand, in the homopolymer, the average twist value is close to 36 degrees with the roll angle close to 0 degrees and large propeller twist values (-20 degrees).  相似文献   

20.
X-ray diffraction in fibres revealed that the calcium salt of poly(dA).poly(dT) is a 10-fold double helix with a pitch of 3.23 nm. The opposite sugar-phosphate chains in the refined model are characterized by a complete conformational equivalence and contain sugars in a conformation close to C2'-endo. As a result a new model of the sodium salt of poly(dA).poly(dT) has been constructed, which is different from the Heteronomous DNA proposed earlier (S. Arnott et al., Nucl. Acids Res. 11, 4141 (1983)). The new model of Na-poly(dA).poly(dT) has conformationally similar opposite chains; it is a structure of the B-type, rather like that of Ca-poly(dA).poly(dT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号