首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

2.
The nature of downhill Ca2+ net-transport into human erythrocytes was investigated using the experimental models of Ca2+ pump inhibition by vanadate and of intracellular chelation of Ca2+ by quin2. Ca2+ uptake by erythrocytes loaded with 0.5 mM vanadate and suspended in 145 mM Na+ -5 mM K+ media was reduced by about 60% when medium K+ was raised to 80 mM. Organic and inorganic Ca2+ entry blockers such as nifedipine (10(-5) M), verapamil (10(-4) M), diltiazem (10(-4) M), Co2+ (1.5 mM) and Cu2+ (0.1 mM) as well as the K+ channel blocker quinidine (1mM) inhibited Ca2+ uptake in 145 mM Na+ -5 mM K+ media by 60-75%. Flunarizine was less effective. In vanadate-loaded cells suspended in 70 mM Na+ -80 mM K+ media, in contrast, flunarizine exerted a dose-dependent inhibition of Ca2+ uptake by up to 80% at 10(-5) M, the other blockers being ineffective (except for verapamil at 10(-4) M). A similar pattern of inhibition was seen in quin2-loaded erythrocytes. The different susceptibility towards inhibitors may indicate that passive Ca2+ uptake by vanadate-loaded erythrocytes suspended in 145 mM Na+ -5 mM K+ media, on the one hand, and by vanadate-loaded erythrocytes suspended in 70 mM Na+ -80 mM K+ media as well as by quin2-loaded erythrocytes, on the other hand, is mediated by two different transport components.  相似文献   

3.
The effect of Ca+2 on the transport and intracellular distribution of Na+ and K+ in Ehrlich ascites tumor cells was investigated in an effort to establish the mechanism of Ca+2-induced hyperpolarization of the cell membrane. Inclusion of Ca+2 (2 mM) in the incubation medium leads to reduced cytoplasmic concentrations of Na+, K+ and Cl- in steady cells. In cells inhibited by ouabain, Ca+2 causes a 41% decrease in the rate of net K+ loss, but is without effect on the rate of net Na+ accumulation. Net K+ flux is reduced by 50%, while net Na+ flux is unchanged in the transport-inhibited cells. The membrane potential of cells in Ca+2-free medium (-13.9 +/- 0.8 mV) is unaffected by the addition of ouabain. However, the potential of cells in Ca+2-containing medium (-23.3 +/- 1.2 mV) declines in one hour after the addition of ouabain to values comparable to those of control cells (-15.2 +/- 0.7 mV). The results of these experiments are consistent with the postulation that Ca+2 exerts two effects on Na+ and K+ transport. First, Ca+2 reduces the membrane permeability to K+ by 25%. Second, Ca+2 alters the coupling of the Na/K active transport mechanism leading to an electrogenic hyperpolarization of the membrane.  相似文献   

4.
Isolated small intestinal epithelial cells, after incubation at 4 degrees C for 30 min, reach ion concentrations (36 mM K+, 113 mM Na+ and 110 mM Cl-) very similar to those of the incubation medium. Upon rewarming to 37 degrees C, cells are able to extrude Na+, Cl- and water and to gain K+. Na+ extrusion is performed by two active mechanisms. The first mechanism, transporting Na+ by exchanging it for K+, is inhibited by ouabain and is insensitive to ethacrynic acid. It is the classical Na+ pump. The second mechanism transports Na+ with Cl- and water, is insensitive to ouabain but is inhibited by ethacrynic acid. Both mechanisms are inhibited by dinitrophenol and anoxia. The second Na+ extruding mechanism could be the Na+/K+/2Cl- cotransport system. However, this possibility can be ruled out because the force driving cotransport would work inwards, and because Na+ extrusion with water loss continues after substitution of Cl- by NO3-. We propose that enterocytes have a second Na+ pump, similar to that proposed in proximal tubular cells.  相似文献   

5.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

6.
In glucose-deprived cerebellar granule cells, substitution of extracellular Na+ with Li+ or Cs+ prevented N-methyl-D-aspartate (NMDA)-induced excitotoxicity. NMDA stimulated 45Ca2+ accumulation and ATP depletion in a Na-dependent manner, and caused neuronal death, even if applied while Na,K-ATPase was inhibited by 1 mM ouabain. The cells treated with NMDA in the presence of ouabain accumulated sizable 45Ca2+ load but most of them failed to elevate cytosolic [Ca2+] upon mitochondrial depolarization. Na/Ca exchange inhibitor, KB-R7943, inhibited Na-dependent and NMDA-induced 45Ca2+ accumulation but only if Na,K-ATPase activity was compromised by ouabain. In cells energized by glucose and exposed to NMDA without ouabain, KB-R7943 reduced NMDA-elicited ionic currents by 19% but failed to inhibit 45Ca2+ accumulation. It appears that a large part of NMDA-induced Ca2+ influx in depolarized and glucose-deprived cells is mediated by reverse Na/Ca exchange. A high level of reverse Na/Ca exchange operation is maintained by a sustained Na+ influx via NMDA channels and depolarization of the plasma membrane. In cells energized by glucose, however, most Ca2+ enters directly via NMDA channels because Na,K-ATPase regenerating Na+ and K+ concentration gradients prevents Na/Ca exchange reversal. Since under these conditions Na/Ca exchange extrudes Ca2+, its inhibition destabilizes Ca2+ homeostasis.  相似文献   

7.
Extracellular ATP (1 mM) inhibited the growth of Friend virus-infected murine erythroleukemia cells (MEL cells) but had no effect on dimethyl sulfoxide-induced differentiation. ATP (1 mM) also caused changes in the permeability of MEL cells to ions. There was an increased influx of 45Ca2+ from a basal level of 5 pmol/min to 18 pmol/min/10(6) cells to achieve a 2-fold increase in steady-state Ca2+ as measured at isotopic equilibration. Ca2+ influx was blocked by diisothiocyanostilbene disulfonate (DIDS), an inhibitor of anion transport. ATP also stimulated Cl- uptake, and this flux was inhibited by DIDS. The ratio of ATP stimulated Cl- to Ca2+ uptake was 1.6:1. K+ and Na+ influx were also stimulated by ATP, but phosphate uptake was inhibited; the Na+ influx dissipated the Na+ gradient and thus inhibited nutrient uptake. ATP-stimulated K+ influx was ouabain inhibitable; however, the total cellular K+ decreased due to an ATP-stimulated ouabain-resistant K+ efflux. Na+ influx and Ca2+ influx occurred by separate independent routes, since Na+ influx was not inhibited by DIDS. The effects observed were specific for ATP *K1/2 MgATP = 0.7 mM) since AMP, GTP, adenosine, and the slowly hydrolyzable ATP analogue adenyl-5'-yl imidodiphosphate were without effect. The major ionic changes in the cell were a decrease in K+ and increase in Na+; cytoplasmic pH and free Ca2+ did not change appreciably. These ATP-induced changes in ion flux are considered to be responsible for growth inhibition.  相似文献   

8.
Cells resuspended in hypotonic medium initially swell as nearly perfect osmometers, but later recover their volume with an associated KCl loss. This regulatory volume decrease (RVD) is unaffected when nitrate is substituted for Cl- or if bumetanide or 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) is added. It is inhibited by quinine, Ba2+, low pH, anticalmodulin drugs, and depletion of intracellular Ca2+. It is accelerated by the Ca2+ ionophore A23187, or by a sudden increase in external Ca2+ and at high pH. A net KCl loss is also seen after addition of ionophore A23187 in isotonic medium. Similarities are demonstrated between the KCl loss seen after addition of A23187 and the KCl loss seen during RVD. It is proposed that separate conductive K+ and Cl- channels are activated during RVD by release of Ca2+ from internal stores, and that the effect is mediated by calmodulin. After restoration of tonicity the cells shrink initially, but recover their volume with an associated KCl uptake. This regulatory volume increase (RVI) is inhibited when NO3- is substituted for Cl-, and is also inhibited by furosemide or bumetanide, but it is unaffected by DIDS. The unidirectional Cl-flux ratio is compatible with either a coupled uptake of Na+ and Cl-, or an uptake via a K+/Na+/2Cl- cotransport system. No K+ uptake was found, however, in ouabain-poisoned cells where a bumetanide-sensitive uptake of Na+ and Cl- in nearly equimolar amounts was demonstrated. Therefore, it is proposed that the primary process during RVI is an activation of an otherwise quiescent Na+/Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump. There is a marked increase in the rate of pump activity in the absence of a detectable increase in intracellular Na+ concentration.  相似文献   

9.
Studies in the human, transgenic mice, and cattle indicate that sperm cell volume regulation plays an important role in male fertility as spermatozoa encounter a hypo-osmotic challenge upon ejaculation into the female tract. Physiological regulatory volume decrease (RVD) was examined using flow cytometry in murine sperm released into incubation medium mimicking uterine osmolality and including putative channel inhibitors. The involvement of K+ channels was indicated by the recovery of volume regulation by the K+ ionophore valinomycin in defective sperm from infertile transgenic mice, and from blockage of RVD by quinine in normal sperm. However, in neither case was the recovery complete. The involvement of volume-sensitive osmolyte and anion channels (VSOAC) were investigated using blockers effective in other cell types. NPPB (5-nitro-2(3-phenylpropylamino) benzoic acid) and tamoxifen inhibited RVD but SITS (4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulphonic acid) at 0.4 and 1 mM had no effect whereas DIDS (di-isothiocyanato-stilbene-2,2'-disulphonic acid) at 1 mM enhanced RVD. Verapamil, but not another P-glycoprotein antagonist cyclosporin, caused sperm swelling which persisted in the presence of valinomycin, in Ca2+-free medium and in the presence of thapsigargin, but swelling was abolished by the Ca2+ ionophore A23187. Nifedipine was slightly effective in blocking RVD. Analysis by Western blotting failed to reveal ClC-2 and ClC-3 members of the chloride channel family in murine or rat sperm proteins despite signal bands in positive tissue controls. These findings implicate the involvement of some unidentified VSOAC in sperm volume regulation, which is probably Ca+-dependent.  相似文献   

10.
The involvement of Ca2+ in the regulatory volume decrease (RVD) mechanism was studied in both isolated enterocytes and intestine of the eel, Anguilla anguilla. Videometric methods and electrophysiological techniques were respectively employed. The isolated enterocytes rapidly swelled following a change from isotonic (315 mOsm/kg) to hypotonic (180 mOsm/kg) saline solutions. Afterwards, they tended to recover their original size. This homeostatic response was inhibited both in the absence of extracellular Ca2+ and in the presence of TMB8, an inhibitor of Ca2+ release from intracellular stores. It is likely that Ca2+ entry through verapamil-sensitive Ca2+ channels is responsible for RVD since the blocker impaired the ability of the cell to recover its volume after the hypotonic shock. The observation that a 10-fold increase of K+ concentration as well as the presence of quinine in the hypotonic solution completely abolished RVD indicated the involvement of K+ in this response. Experiments performed with the isolated intestine suggested that the opening of basolateral K+ channels facilitates K+ loss (and hence water efflux) from the cell during RVD and that this opening is probably due to Ca2+ entry into the cell through both the mucosal and the serosal membranes.  相似文献   

11.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

12.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

13.
Nitrendipine, a classical blocker of L-type Ca2+ channels, is shown to be a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes. In erythrocytes suspended in a solution with physiological Na+ and K+ concentrations and in which the channel was activated using the Ca2+ ionophore ionomycin, nitrendipine inhibited K+(86Rb+) influx with an I50 of around 130 nM. Similar results were obtained for K+(86Rb+) efflux, and for K+(86Rb+) influx into cells suspended in a high-K+ medium.  相似文献   

14.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

15.
The present paper characterizes the Na+-stimulated ATPase activity present in basal-lateral plasma membranes from guinea-pig kidney proximal tubular cells. These characteristics are compared with those of the (Na+ + K+)-stimulated ATPase activity, and they are: (A) Na+-ATPase activity: (1) requires Mg2+; (2) may be activated by mu molar quantities of Ca2+; (3) optimal ratio Mg:ATP = 5:1-2 and Ka for Mg:ATP = 3:0.60 mM; (4) Ka for Na+:8 mM; (5) does not require K+; (6) is only stimulated by Na+ and Li+ (in a lower extent); (7) is similarly stimulated by the Na+ salt of different anions; (8) hydrolyzes only ATP; (9) optimal temperature: 47 degrees C; (10) optimal pH: 6.9; (11) is ouabain insensitive; (12) is totally inhibited by 1.5 mM ethacrynic acid, 2 mM furosemide and 0.75 mM triflocin. (B) (Na+ + K+)-ATPase activity: (1) also requires Mg2+; (2) is inhibited by Ca2+; (3) optimal ratio Mg:ATP = 1.25:1 and Ka for Mg:ATP = 0.50: 0.40 mM; (4) Ka for Na+: 14 mM (data not shown); (5) needs K+ together with Na+; (6) K+ may be substituted by: Rb+ greater than NH+4 greater than Cs+; (7) is anion insensitive; (8) hydrolyzes mostly ATP and to a lesser extent GTP, ITP, UTP, ADP, CTP; (9) optimal temperature: 52 degrees C; (10) optimal pH: 7.2; (11) 100% inhibited by 1 mM ouabain; (12) 63% inhibited by 1.5 mM ethacrynic acid, 10% inhibited by 2 mM furosemide and insensitive to 0.75 mM triflocin.  相似文献   

16.
There is evidence that three inhibitors of Na,K-ATPase activity--ouabain, K-free extracellular fluid, and vanadate--inhibit renin secretion by increasing Ca2+ concentration in juxtaglomerular cells, but in the case of vanadate, it is uncertain whether the increase in Ca2+ is due to a decrease in Ca2+ efflux (inhibition of Ca-ATPase activity, or inhibition of Na,K-ATPase activity, followed by an increase in intracellular Na+ and a decrease in Na-Ca exchange) or to an increase in Ca2+ influx through potential operated Ca channels (inhibition of electrogenic Na,K transport, followed by membrane depolarization and activation of Ca channels). In the present experiments, the rat renal cortical slice preparation was used to compare and contrast the effects of ouabain, of K-free fluid, and of vanadate on renin secretion, in the absence and presence of methoxyverapamil, a Ca channel blocker. Basal renin secretory rate averaged 7.7 +/- 0.3 GU/g/60 min, and secretory rate was reduced to nearly zero by 1 mM ouabain, by K-free fluid, by 0.5 mM vanadate, and by K-depolarization (increasing extracellular K+ to 60 mM). Although 0.5 microM methoxyverapamil completely blocked the inhibitory effect of K-depolarization, it failed to antagonize the inhibitory effects of ouabain, of K-free fluid, and of vanadate. A concentration of methoxyverapamil two hundred times higher (100 microM) completely blocked the inhibitory effects of vanadate, but still failed to antagonize the effects of ouabain and of K-free fluid. Collectively, these observations demonstrate that vanadate-induced inhibition of renin secretion cannot be attributed entirely to Na,K-ATPase inhibition, since in the presence of methoxyverapamil, the effect of vanadate differed from the effects of either ouabain (a specific Na,K-ATPase inhibitor) or K-free fluid. Moreover, it cannot be attributed entirely to a depolarization-induced influx of Ca2+ through potential-operated Ca channels, since methoxyverapamil antagonized K-depolarization-induced inhibition of renin secretion much more effectively than it antagonized vanadate-induced inhibition.  相似文献   

17.
Human peripheral blood lymphocytes regulate their volumes in hypotonic solutions. In hypotonic media in which Na+ is the predominant cation, an initial swelling phase is followed by a regulatory volume decrease (RVD) associated with a net loss of cellular K+. In media in which K+ is the predominant cation, the rapid initial swelling is followed by a slower second swelling phase. 86Rb+ fluxes increased during RVD and returned to normal when the original volume was approximately regained. Effects similar to those induced by hypotonic stress could also be produced by raising the intracellular Ca++ level. In isotonic, Ca++- containing media cells were found to shrink upon addition of the Ca++ ionophore A23187 in K+-free media, but to swell in K+-rich media. Exposure to Ca++ plus A23187 also increased 86Rb+ fluxes. Quinine (75 microM), an inhibitor of the Ca++-activated K+ pathway in other systems blocked RVD, the associated K+ loss, and the increase in 86Rb+ efflux. Quinine also inhibited the volume changes and the increased 86Rb fluxes induced by Ca++ plus ionophore. The calmodulin inhibitors trifluoperazine, pimozide and chlorpromazine blocked RVD as well as Ca++ plus A23187-induced volume changes. Trifluoperazine also prevented the increase in 86Rb+ fluxes and K+ loss induced by hypotonicity. Chlorpromazine sulfoxide, a relatively ineffective calmodulin antagonist, was considerably less potent as an inhibitor of RVD than chlorpromazine. It is suggested than an elevation in cytoplasmic [Ca++], triggered by cell swelling, increases the plasma membrane permeability to K+, the ensuing increased efflux of K+, associated anions, and osmotically obliged water, leading to cell shrinking (RVD).  相似文献   

18.
The present study compared ouabain-sensitive unidirectional K+ flux into (JinK) and out of (JoutK) perfused rat hindlimb skeletal muscle in situ and mouse flexor digitorum brevis (FDB) in vitro. In situ, 5 mM ouabain inhibited 54 +/- 4% of the total JinK in 28 +/- 1 min, and increased the net and unidirectional efflux of K+ within 4 min. In contrast, 1.8 mM ouabain inhibited 40 +/- 8% of the total JinK in 38 +/- 2 min, but did not significantly affect JoutK. In vitro, 1.8 and 0.2 mM ouabain decreased JinK to a greater extent (83 +/- 5%) than in situ, but did not significantly affect 42K loss rate compared with controls. The increase in unidirectional K+ efflux (JoutK) with 5 mM ouabain in situ was attributed to increased K+ efflux through cation channels, since addition of barium (1 mM) to ouabain-perfused muscles returned JoutK to baseline values within 12 min. Perfusion with 5 mM ouabain plus 2 mM tetracaine for 30 min decreased JinK 46 +/- 9% (0.30 +/- 0.03 to 0.16 +/- 0.02 micromol x min(-1) x g(-1)), however tetracaine was unable to abolish the ouabain-induced increase in unidirectional K+ efflux. In both rat hindlimb and mouse FDB, tetracaine had no effect on JoutK. Perfusion of hindlimb muscle with 0.1 mM tetrodotoxin (TTX, a Na+ channel blocker) decreased JinK by 15 +/- 1%, but had no effect on JoutK; subsequent addition of ouabain (5 mM) decreased JinK a further 32 +/- 2%. The ouabain-induced increase in unidirectional K+ efflux did not occur when TTX was perfused prior to and during perfusion with 5 mM ouabain. We conclude that 5 mM ouabain increases the unidirectional efflux of K+ from skeletal muscle through a barium and TTX-sensitive pathway, suggestive of voltage sensitive Na+ channels, in addition to inhibiting Na+/K+-ATPase activity.  相似文献   

19.
Volume regulation of Chinese hamster ovary cells in anisoosmotic media   总被引:2,自引:0,他引:2  
Chinese hamster ovary (CHO) cells when suspended in anisoosmotic media regulate their volumes by the activation of specific ion transport pathways. In hypoosmotic media the cells first swell and then return to their isoosmotic volumes by the loss of cellular KCl and osmotically obliged water. This regulatory volume decrease (RVD) is insensitive to ouabain or bumetanide but is blocked by quinine, cetiedil and oligomycin C. Based on cell volume and membrane potential measurements under various experimental conditions, we conclude that hypoosmotic shock activates independent, conductive transport pathways for K+ and for Cl-, respectively. The anion pathway can also transport NO3- and SCN- but not gluconate- anions. Osmotic shrinkage of CHO cells does not produce a regulatory volume increase (RVI) unless the cells have previously undergone a cycle of RVD. RVI is a Na+-dependent, amiloride-sensitive, but ouabain- and oligomycin-insensitive process, probably involving a Na+-H+ exchange system. Internal acidification of isoosmotic cells by addition of a permeable weak acid also activates an amiloride-sensitive Na+-H+ exchange, producing a volume increase. Both RVD and RVI in CHO cells seem to involve molecular mechanisms similar to those described for the volume regulation of lymphocytes, indicating the prevalence of these phenomena in nucleated mammalian cells. Cultured CHO cell lines may provide a basis for a genetic characterization of the volume-regulatory transport pathways.  相似文献   

20.
The Kd for ouabain for inhibition of Na+,K+-ATPase isolated from murine plasmocytoma MOPC 173 cells is 120 microM, but when isolated in the presence of EDTA, it is 100-fold lower (1.2 microM). Simultaneous addition of muscle tropomyosin and calcium to sensitive membranes restored the original insensitivity (tropomyosin bound to the membranes in an irreversible and saturable manner). For comparison 86Rb influx into intact cells, mediated by the Na+,K+-pump, is half-maximally inhibited at 50 microM ouabain. Calcium converts the enzyme to an insensitive form. This appeared to involve calmodulin because after extraction of calmodulin with EDTA and EGTA from sensitive membranes, they could not be made insensitive by the addition of tropomyosin and Ca2+. Addition of exogenous calmodulin to these calmodulin-depleted membranes was required, in addition to tropomyosin and Ca2+, to decrease the ouabain sensitivity. The involvement of calmodulin was further assessed by measuring the range of Ca2+ concentrations required to convert to the insensitive form. At saturating concentrations of tropomyosin, increasing free [Ca2+] up to 3 microM led to an heterogeneous population of Na+,K+-ATPase forms. The calcium dependency was a saturable process. The shift to the insensitive form was half maximal at 0.65 + 0.11 microM free Ca2+ and was abolished by the addition of troponin I or trifluoroperazine (0.1 mM). These results suggest that, in murine plasmocytoma cells, the intrinsic sensitivity of Na+,K+-ATPase to ouabain might be regulated by a calmodulin-dependent process within a submembrane contractile-like environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号