首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have designed and synthesizedbenzo[c]quinolizinium derivatives and evaluated their effects on theactivity of G551D cystic fibrosis transmembrane conductance regulator(CFTR) expressed in Chinese hamster ovary and Fisher ratthyroid cells. We demonstrated, using iodide efflux, whole cell patchclamp, and short-circuit recordings, that5-butyl-6-hydroxy-10-chlorobenzo[c]quinolizinium chloride (MPB-91)restored the activity of G551D CFTR (EC50 = 85 µM)and activated CFTR in Calu-3 cells (EC50 = 47 µM).MPB-91 has no effect on the ATPase activity of wild-type and G551DNBD1/R/GST fusion proteins or on the ATPase, GTPase, and adenylatekinase activities of purified NBD2. The activation of CFTR by MPB-91 isindependent of phosphorylation because 1) kinase inhibitors have no effect and 2) the compound still activated CFTRhaving 10 mutated protein kinase A sites (10SA-CFTR). The newpharmacological agent MPB-91 may be an important candidate drug toameliorate the ion transport defect associated with CF and to point outa new pathway to modulate CFTR activity.

  相似文献   

2.
3.
4.
The patch-clamp technique was used to investigate the effects ofthe isoflavone genistein on disease-causing mutations (G551D andF508) of the cystic fibrosis transmembrane conductance regulator (CFTR). In HeLa cells recombinantly expressing thetrafficking-competent G551D-CFTR, the forskolin-stimulated Cl currentswere small, and average open probability of G551D-CFTR wasPo = 0.047 ± 0.019. Addition of genistein activated Cl currents~10-fold, and the Po of G551D-CFTRincreased to 0.49 ± 0.12, which is aPo similar towild-type CFTR. In cystic fibrosis (CF) epithelial cells homozygous forthe trafficking-impaired F508 mutation, forskolin and genistein activated Cl currents only after 4-phenylbutyrate treatment. These datasuggested that genistein activated CFTR mutants that were present inthe cell membrane. Therefore, we tested the effects of genistein in CFpatients with the G551D mutation in nasal potential difference (PD)measurements in vivo. The perfusion of the nasal mucosa of G551D CFpatients with isoproterenol had no effect; however, genisteinstimulated Cl-dependent nasal PD by, on average, 2.4 ± 0.6 mV, which corresponds to 16.9% of the responses (to -adrenergicstimulation) found in healthy subjects.

  相似文献   

5.
Mutations in the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR) result in cystic fibrosis (CF). CFTR is a chloride channel that is regulated by phosphorylation and gated by ATP binding and hydrolysis at its nucleotide binding domains (NBDs). G551D-CFTR, the third most common CF-associated mutation, has been characterized as having a lower open probability (Po) than wild-type (WT) channels. Patients carrying the G551D mutation present a severe clinical phenotype. On the other hand, G1349D, also a mutant with gating dysfunction, is associated with a milder clinical phenotype. Residues G551 and G1349 are located at equivalent positions in the highly conserved signature sequence of each NBD. The physiological importance of these residues lies in the fact that the signature sequence of one NBD and the Walker A and B motifs from the other NBD form the ATP-binding pocket (ABP1 and ABP2, named after the location of the Walker A motif) once the two NBDs dimerize. Our studies show distinct gating characteristics for these mutants. The G551D mutation completely eliminates the ability of ATP to increase the channel activity, and the observed activity is approximately 100-fold smaller than WT-CFTR. G551D-CFTR does not respond to ADP, AMP-PNP, or changes in [Mg(2+)]. The low activity of G551D-CFTR likely represents the rare ATP-independent gating events seen with WT channels long after the removal of ATP. G1349D-CFTR maintains ATP dependence, albeit with a Po approximately 10-fold lower than WT. Interestingly, compared to WT results, the ATP dose-response relationship of G1349D-CFTR is less steep and shows a higher apparent affinity for ATP. G1349D data could be well described by a gating model that predicts that binding of ATP at ABP1 hinders channel opening. Thus, our data provide a quantitative explanation at the single-channel level for different phenotypes presented by patients carrying these two mutations. In addition, these results support the idea that CFTR's two ABPs play distinct functional roles in gating.  相似文献   

6.
ATP hydrolysis by the cystic fibrosis transmembraneconductance regulator (CFTR)Cl channel predicts thatenergy from hydrolysis might cause asymmetric transitions in thegating cycle. We found that 3-(N-morpholino)propanesulfonic acid (MOPS) blocked the open channel by binding to a site 50% of theway through the electrical field. Block by MOPS revealed two distinctstates, O1 and O2, which showed a strong asymmetry during bursts ofactivity; the first opening in a burst was in the O1 state and the lastwas in the O2 state. Addition of a nonhydrolyzable nucleosidetriphosphate prevented the transition to the O2 state and prolonged theO1 state. These data indicate that ATP hydrolysis by thenucleotide-binding domains drives a series of asymmetric transitions inthe gating cycle. They also indicate that ATP hydrolysis changes theconformation of the pore, thereby altering MOPS binding.

  相似文献   

7.
We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations.  相似文献   

8.
Two ATP-binding domains are found in members of the family of ATP-dependent transport proteins, which includes P-glycoprotein and cystic fibrosis transmembrane conductance regulator. To investigate the involvement of the two ATP-binding domains in the ATPase activity of P-glycoprotein, full-length and the 5'-half of human MDR1 cDNA, which encodes P-glycoprotein, were fused with the Escherichia coli lacZ gene and expressed in NIH3T3 cells. Immunoprecipitated full-length P-glycoprotein beta-galactosidase showed ATPase activity with apparent specific activity of 180 nmol/mg/min, a value higher than previously reported, in the presence of phospholipids, suggesting that stabilization of the transmembrane domains is necessary for ATP hydrolysis. N-terminal half P-glycoprotein-beta-galactosidase also showed ability to hydrolyze ATP but with slightly lower specific activity. Both ATPase activities showed similar characteristics when the effect of several inhibitors was analyzed, indicating that the N-terminal ATP-binding domain contains all residues necessary to hydrolyze ATP without interacting with the C-terminal ATP-binding domain.  相似文献   

9.
The pharmacological activation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel mutated at glycine 551 (G551D-CFTR) was studied in the presence of the benzimidazolone derivative NS004 and compared to that of wild-type (wt) CFTR. Using iodide (125I) efflux and whole-cell patch-clamp techniques we found dose-dependent stimulation of phosphorylated wt-CFTR channels by NS004 with an EC 50 11 µM. With non-phosphorylated CFTR, the effect of NS004 was apparent only at concentration >100 µM. In G551D-CFTR-expressing CHO cells, neither forskolin (from 0.1 to 10 µM) nor NS004 (from 0.1 to 200 µM) added separately were able to stimulate channel activity. However, in the presence of 10 µM forskolin, NS004 stimulated G551D-CFTR activity in a dose-dependent manner with an EC 50 1.5 µM. We also determined the half-maximal effective concentration of forskolin (EC 50 3.2 µM) required to stimulate G551D channel activity in presence of 1.5 µM NS004. No inhibitory effect was observed at high concentration of NS004 with both wt- and G551D-CFTR. Whole-cell recordings of CFTR chloride currents from cells expressing wild-type or G551D-CFTR in the presence of NS004 were linear, time- and voltage-independent. The inhibitory profile of G551D-CFTR channel activity was similar to that of wild type, i.e., inhibition by glibenclamide (100 µM) and DPC (250 µM) but not by DIDS (200 µM) nor calixarene (100 nM). These results show that NS004 activates wt-CFTR channel and restores G551D-CFTR channel activity, the potency of which depends on both the concentration of NS004 and the phosphorylation status of CFTR.  相似文献   

10.
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) channel activity explains most of the manifestations of the cystic fibrosis (CF) disease. To understand the consequences of CF mutations on CFTR channel activity, we compared the pharmacological properties of wild-type (wt) and G551D-CFTR. Dose-dependent relationships of wt-CFTR activated by genistein follows a non-Michaelis-Menten behavior consistent with the presence of two binding sites. With phosphorylated CFTR, a high affinity site for genistein is the activator (K(s) approximately 3 microm), whereas a second site of low affinity (K(i) approximately 75 microm) is the inhibitor. With non-phosphorylated CFTR, K(s) was increased (K(s) approximately 12 microm), but K(i) was not affected (K(i) approximately 70 microm). In G551D-CFTR cells, channel activity was recovered by co-application of forskolin and genistein in a dose-dependent manner. A further stimulation of G551D-CFTR channel activity was measured at concentrations from 30 microm to 1 mm. The dose response is described by a classical Michaelis-Menten kinetics with only a single apparent site (K(m) approximately 11 microm). Our results suggest glycine 551 in NBD1 as an important location within the low affinity inhibitory site for genistein and offers new evidence for pharmacological alteration caused by an NBD1 mutation of CFTR. This study also reveals how a mutation of an ion channel converts a non-Michaelis-Menten behavior (two binding sites) into a classical Michaelis-Menten model (one binding site).  相似文献   

11.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel gated by ATP binding and hydrolysis at its nucleotide binding domains (NBD). The NBDs dimerize in a head-to-tail configuration, forming two ATP binding pockets (ABP) with the ATP molecules buried at the dimer interface. Previous studies have indicated that ABP2, formed by the Walker A and B motifs of NBD2 and the signature sequence of NBD1, is the site critical for the ATP-dependent opening of CFTR. The G551D mutation in ABP2, the third most common cystic fibrosis-associated mutation, abolishes ATP-dependent gating, resulting in an open probability that is approximately 100-fold lower than that of wild-type channels. Interestingly, we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) increases G551D currents mainly by increasing the open time of the channel. This effect is reduced when P-ATP is applied together with ATP, suggesting a competition between ATP and P-ATP for a common binding site. Introducing mutations that lower the nucleotide binding affinity at ABP2 did not alter significantly the effects of P-ATP on G551D-CFTR, whereas an equivalent mutation at ABP1 (consisting of the Walker A and B motifs of NBD1 and the signature sequence of NBD2) dramatically decreased the potency of P-ATP, indicating that ABP1 is the site where P-ATP binds to increase the activity of G551D-CFTR. These results substantiate the idea that nucleotide binding at ABP1 stabilizes the open channel conformation. Our observation that P-ATP enhances the G551D activity by binding at ABP1 implicates that ABP1 can potentially be a target for drugs to bind and increase the channel activity.  相似文献   

12.
The genetic disease cystic fibrosis (CF) is caused by loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Two CF mutants, G551D and G1349D, affect equivalent residues in the highly conserved LSGGQ motifs that are essential components of the ATP-binding sites of CFTR. Both mutants severely disrupt CFTR channel gating by decreasing mean burst duration (MBD) and prolonging greatly the interburst interval (IBI). To identify small molecules that rescue the gating defects of G551D- and G1349D-CFTR and understand better how these agents work, we used the patch clamp technique to study the effects on G551D- and G1349D-CFTR of phloxine B, pyrophosphate (PP(i)), and 2'-deoxy ATP (2'-dATP), three agents that strongly enhance CFTR channel gating. Phloxine B (5 microm) potentiated robustly G551D-CFTR Cl- channels by altering both MBD and IBI. In contrast, phloxine B (5 microm) decreased the IBI of G1349D-CFTR, but this effect was insufficient to rescue G1349D-CFTR channel gating. PP(i) (5 mm) potentiated weakly G551D-CFTR and was without effect on the G1349D-CFTR Cl- channel. However, by altering both MBD and IBI, albeit with different efficacies, 2'-dATP (1 mm) potentiated both G551D- and G1349D-CFTR Cl- channels. Using the ATP-driven nucleotide-binding domain dimerization model of CFTR channel gating, we suggest that phloxine B, PP(i) and 2'-dATP alter channel gating by distinct mechanisms. We conclude that G551D- and G1349D-CFTR have distinct pharmacological profiles and speculate that drug therapy for CF is likely to be mutation-specific.  相似文献   

13.
A brief summary of the factors that control synthesis and hydrolysis of ATP by the mitochondrial H+-ATP synthase is made. Particular emphasis is placed on the role of the natural ATPase inhibitor protein. It is clear from the existing data obtained with a number of agents that there is no correlation between variations of the rate of ATP hydrolysis and ATP synthesis as driven by respiration. The mechanism by which each condition differentially affects the two activities is not entirely known. For the case of the natural ATPase inhibitor protein, it appears that the protein controls the kinetics of the enzyme. This control seems essential for achieving maximal accumulation of ATP during electron transport in systems that contain relatively high concentrations of ATP.  相似文献   

14.
The value of G degrees for the hydrolysis of ATP   总被引:16,自引:0,他引:16  
  相似文献   

15.
16.
Dielectric spectroscopy with microwaves in the frequency range between 0.2 and 20 GHz was used to study the hydration of myosin subfragment 1 (S1). The data were analyzed by a method recently devised, which can resolve the total amount of water restrained by proteins into two components, one with a rotational relaxation frequency (fc) in the gigahertz region (weakly restrained water) and the other with lower fc (strongly restrained water). The weight ratio of total restrained water to S1 protein thus obtained (0.35), equivalent to 2100 water molecules per S1 molecule, is not much different from the values (0.3-0.4) for other proteins. The weakly restrained component accounts for about two-thirds of the total restrained water, which is in accord with the number of water molecules estimated from the solvent-accessible surface area of alkyl groups on the surface of the atomic model of S1. The number of strongly restrained water molecules coincides with the number of solvent-accessible charged or polar atoms. The dynamic behavior of the S1-restrained water during the ATP hydrolysis was also examined in a time-resolved mode. The result indicates that when S1 changes from the S1.ADP state into the S1.ADP.P1 state (ADP release followed by ATP binding and cleavage), about 9% of the weakly restrained waters are released, which are restrained again on slow P1 release. By contrast, there is no net mobilization of strongly restrained component. The observed changes in S1 hydration are quantitatively consistent with the accompanying large entropy and heat capacity changes estimated by calorimetry (Kodama, 1985), indicating that the protein surface hydrophobicity change plays a crucial role in the enthalpy-entropy compensation effects observed in the steps of S1 ATP hydrolysis.  相似文献   

17.
18.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) protein superfamily. Unlike most other ABC proteins that function as active transporters, CFTR is an ATP-gated chloride channel. The opening of CFTR’s gate is associated with ATP-induced dimerization of its two nucleotide-binding domains (NBD1 and NBD2), whereas gate closure is facilitated by ATP hydrolysis-triggered partial separation of the NBDs. This generally held theme of CFTR gating—a strict coupling between the ATP hydrolysis cycle and the gating cycle—is put to the test by our recent finding of a short-lived, post-hydrolytic state that can bind ATP and reenter the ATP-induced original open state. We accidentally found a mutant CFTR channel that exhibits two distinct open conductance states, the smaller O1 state and the larger O2 state. In the presence of ATP, the transition between the two states follows a preferred O1→O2 order, a telltale sign of a violation of microscopic reversibility, hence demanding an external energy input likely from ATP hydrolysis, as such preferred gating transition was abolished in a hydrolysis-deficient mutant. Interestingly, we also observed a considerable amount of opening events that contain more than one O1→O2 transition, indicating that more than one ATP molecule may be hydrolyzed within an opening burst. We thus conclude a nonintegral stoichiometry between the gating cycle and ATP consumption. Our results lead to a six-state gating model conforming to the classical allosteric mechanism: both NBDs and transmembrane domains hold a certain degree of autonomy, whereas the conformational change in one domain will facilitate the conformational change in the other domain.  相似文献   

19.
ATP diphosphohydrolase (EC 3.6.1.5) catalyzes the hydrolysis of diphospho- and triphosphonucleosides and is sensitive to divalent cations. In this paper, we investigated the dependence of ATP hydrolysis on the concentration of free Mg2+ and Ca2+ and the cation ATP complexes. The enzyme was isolated from porcine zymogen granule membranes, solubilized in Triton X-100, and purified on a 5'-AMP-Sepharose 4B affinity column resulting in a 1500-fold purification. Free unprotonated ATP4- was hydrolyzed in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. When hydrolysis rate was measured at different concentrations of the cation-ATP complex at constant free cation concentrations, normal hyperbolic curves were obtained. In CaCl2, both Kapp and Vapp increased as free Ca2+ increased from 25 to 1000 microM. In MgCl2, Kapp increased and Vapp decreased as free Mg2+ increased from 25 to 500 microM. From the rapid equilibrium rate equation, Ks and Vmax values of the substrates were calculated. We found that free ATP4-, Ca-ATP2-, and Mg-ATP2- are substrates and free cations do not bind the enzyme.  相似文献   

20.
A single mutation from aspartate to glycine at position 614 has dominated all circulating variants of the severe acute respiratory syndrome coronavirus 2. D614G mutation induces structural changes in the spike (S) protein that strengthen the virus infectivity. Here, we use molecular dynamics simulations to dissect the effects of mutation and 630-loop rigidification on S-protein structure. The introduction of the mutation orders the 630-loop structure and thereby induces global structural changes toward the cryoelectron microscopy structure of the D614G S-protein. The ordered 630-loop weakens local interactions between the 614th residue and others in contrast to disordered structures in the wild-type protein. The mutation allosterically alters global interactions between receptor-binding domains, forming an asymmetric and mobile down conformation and facilitating transitions toward up conformation. The loss of salt bridge between D614 and K854 upon the mutation generally stabilizes S-protein protomer, including the fusion peptide proximal region that mediates membrane fusion. Understanding the molecular basis of D614G mutation is crucial as it dominates in all variants of concern, including Delta and Omicron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号