首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenylate cyclase-activating polypeptide 1 (ADCYAP1) binds both Gs- and Gq-coupled receptors and stimulates adenylate cyclase/cAMP and protein kinase C/mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathways in pituitary gonadotrophs. In this study, we investigated the cAMP and MAPK3/1 signaling pathways induced by ADCYAP1 stimulation and examined the effects of ADCYAP1 on the expression of gonadotropin subunit genes using a clonal gonadotroph cell line, LbetaT2. ADCYAP1 increased intracellular cAMP accumulation up to 19-fold in LbetaT2 cells. Common alpha-glycoprotein subunit gene (Cga) promoter activity was strongly activated by both ADCYAP1 and the cyclic-AMP analog, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Both had little effect on luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoter activities. Cga promoter activity was significantly increased by transfection with constitutively active cAMP-dependent protein kinase (PKA). Activities of the Lhb and Fshb promoters were only modestly increased. Both ADCYAP1 and CPT-cAMP induced MAPK3/1 activation in LbetaT2 cells. The MEK inhibitor, U0126, and the PKA inhibitors, H89 and cAMP-dependent protein kinase peptide inhibitor (PKI), completely inhibited MAPK3/1 activation by either ADCYAP1 or CPT-cAMP. Using luciferase reporter constructs containing cis-elements, the cAMP response element (Cre) promoter was stimulated about 4-fold by ADCYAP1. ADCYAP1-induced Cre promoter activity was completely inhibited by H89, but not by U0126. ADCYAP1 also increased the activity of the serum response element (Sre) promoter, a target for MAPK3/1, and treatment of the cells with U0126 completely inhibited ADCYAP1-induced Sre promoter activity. ADCYAP1-increased Cga promoter activity was inhibited partially by both H89 and U0126. Although combining the inhibitors showed an additive inhibition effect, it did not result in complete inhibition. These results suggest that in LbetaT2 cells, ADCYAP1 mainly increases Cga through activation of PKA and MAPK3/1, as well as through an additional unknown pathway.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The neuropeptide pituitary adenylate cyclase activating polypeptide (ADCYAP 1, or PACAP) has been demonstrated to enhance gonadotropin-releasing hormone (GnRH)-induced gonadotropin secretion and regulate gonadotropin subunit gene expression in cultures of anterior pituitary cells. In the present study, we used in situ hybridization and real-time polymerase chain reaction to examine the expression of Pacap mRNA within the paraventricular nucleus (PVN) and anterior pituitary throughout the estrous cycle of the rat. Levels of luteinizing hormone in serum and pituitary gonadotropin subunit mRNAs were evaluated and displayed cyclic fluctuations similar to those reported previously. Pacap mRNA expression in the PVN and pituitary varied significantly during the estrous cycle, with the greatest changes occurring on the day of proestrus. Pacap mRNA levels in the PVN declined significantly on the morning of diestrus. During proestrus, PVN Pacap mRNA levels significantly increased 3 h before the gonadotropin surge and then declined. Pituitary expression of Pacap mRNA also varied on the afternoon of proestrus with a moderate decline at the time of the gonadotropin surge and a significant increase later in the evening. Expression of the mRNA species encoding the 288 amino acid form of follistatin increased significantly following the rise in pituitary Pacap mRNA, at the termination of the secondary surge in follicle-stimulating hormone beta (Fshb) gene expression. These results suggest that PACAP is involved in events before and following the gonadotropin surge, perhaps through increased gonadotroph sensitivity to GnRH and suppression of Fshb subunit expression through increased follistatin, as previously observed in vitro.  相似文献   

9.
10.
11.
Pituitary Fshb concentrations increase markedly and selectively beginning on Postnatal Day 20 in the male rat. To evaluate the factors potentially responsible for this rise in FSH, we adjusted the time of weaning, which is generally also on Day 20. Male rat pups were provided nutrients by suckling only and were weaned to laboratory chow earlier (Day 17) or later (Day 23) than normally performed in animal facilities (Day 20). Between ages 17 and 29 days, significant increases were seen in serum LH (1.4-fold) and FSH (2.4-fold) levels; pituitary expression of Lhb (5.4-fold), Fshb (21.3-fold), and inhibin beta B (Inhbb, 2.26-fold) mRNAs; and testicular expression of Inhbb (10-fold) mRNA. Concurrently, significant decreases occurred in serum inhibin B levels (1.8-fold); pituitary adenylate cyclase-activating polypeptide (Adcyap1, 4.2-fold), total follistatin (Fst, 3.5-fold), and Fst isoform 288 (5.6-fold) mRNAs; and testicular expression of inhibin beta A (8.2-fold) mRNA. Early weaning significantly increased serum FSH but not LH and increased pituitary expression of Fshb and GnRH receptor (Gnrhr) mRNAs but not Lhb. Early weaning also significantly decreased serum inhibin B but increased testicular expression of the Inhbb subunit. Early weaning also caused pituitary expression of Fst and Adcyap1 to decline earlier than in the control group. Immediately after weaning, growth accelerated substantially, and the time of weaning produced significant and differential effects on circulating leptin levels that were not related to indices of FSH production. From these observations, we propose the novel hypothesis that the increase in growth rate subsequent to weaning signals circulating inhibin B levels to fall and pituitary Adcyap1 and consequently Fst expression to decrease, and that these events together facilitate the rise in Fshb and Gnrhr expression by increasing pituitary activin signaling.  相似文献   

12.
13.
14.
15.
To determine the role of each estrogen receptor (ER) form (ERalpha, ERbeta) in mediating the estrogen actions necessary to maintain proper function of the hypothalamic-pituitary-gonadal axis, we have characterized the hypothalamic-pituitary-gonadal axis in female ER knockout (ERKO) mice. Evaluation of pituitary function included gene expression assays for Gnrhr, Cga, Lhb, Fshb, and Prl. Evaluation of ovarian steroidogenic capacity included gene expression assays for the components necessary for estradiol synthesis: i.e. Star, Cyp11a, Cyp17, Cyp19, Hsd3b1, and Hsd17b1. These data were corroborated by assessing plasma levels of the respective peptide and steroid hormones. alphaERKO and alphabetaERKO females exhibited increased pituitary Cga and Lhb expression and increased plasma LH levels, whereas both were normal in betaERKO. Pituitary Fshb expression and plasma FSH were normal in all three ERKOs. In the ovary, all three ERKOs exhibited normal expression of Star, Cyp11a, and Hsd3b1. In contrast, Cyp17 and Cyp19 expression were elevated in alphaERKO but normal in betaERKO and alphabetaERKO. Plasma steroid levels in each ERKO mirrored the steroidogenic enzyme expression, with only the alphaERKO exhibiting elevated androstenedione and estradiol. Elevated plasma testosterone in alphaERKO and alphabetaERKO females was attributable to aberrant expression of Hsd17b3 in the ovary, representing a form of endocrine sex reversal, as this enzyme is unique to the testes. Enhanced steroidogenic capacity in alphaERKO ovaries was erased by treatment with a GnRH antagonist, indicating these phenotypes to be the indirect result of excess LH stimulation that follows the loss of ERalpha in the hypothalamic-pituitary axis. Overall, these findings indicate that ERalpha, but not ERbeta, is indispensable to the negative-feedback effects of estradiol that maintain proper LH secretion from the pituitary. The subsequent hypergonadism is illustrated as increased Cyp17, Cyp19, Hsd17b1, and ectopic Hsd17b3 expression in the ovary.  相似文献   

16.
17.
18.
Combination of retinoic acids (RAs) and interferons (IFNs) has synergistic apoptotic effects and is used in cancer treatment. However, the underlying mechanisms remain unknown. Here, we demonstrate that mitochondrial respiratory chain (MRC) plays an essential role in the IFN-beta/RA-induced cancer cell death. We found that IFN-beta/RA upregulates the expression of MRC complex subunits. Mitochondrial-nuclear translocation of these subunits was not observed, but overproduction of reactive oxygen species (ROS), which causes loss of mitochondrial function, was detected upon IFN-beta/RA treatment. Knockdown of GRIM-19 (gene associated with retinoid-interferon-induced mortality-19) and NDUFS3 (NADH dehydrogenase (ubiquinone) Fe-S protein 3), two subunits of MRC complex I, by siRNA in two cancer cell lines conferred resistance to IFN-beta/RA-induced apoptosis and reduced ROS production. In parallel, expression of late genes induced by IFN-beta/RA that are directly involved in growth inhibition and cell death was also repressed in the knockdown cells. Our data suggest that the MRC regulates IFN-beta/RA-induced cell death by modulating ROS production and late gene expression.  相似文献   

19.
20.
Functional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways1,2. However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time3-5. Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor. These cell lines facilitate the determination of the contribution of ACF to induction of cell death by the adenovirus E4orf4 protein6. Sequences encoding short hairpin RNAs for the Acf1 and SNF2h subunits of the ACF chromatin remodeling factor were cloned next to a doxycycline-inducible promoter in a plasmid also containing a gene for the neomycin resistance gene. Neomycin-resistant cell clones were selected in the presence of G418 and isolated. The resulting cell lines were induced by doxycycline treatment, and once Acf1 or SNF2h expression levels were reduced, the cells were transfected with a plasmid encoding E4orf4 or an empty vector. To confirm the specific effect of the shRNA constructs, Acf1 or SNF2h protein levels were restored to WT levels by cotransfection with a plasmid expressing Acf1 or SNF2h which were rendered resistant to the shRNA by introduction of silent mutations. The ability of E4orf4 to induce cell death in the various samples was determined by a DAPI assay, in which the frequency of appearance of nuclei with apoptotic morphologies in the transfected cell population was measured7-9.The protocol described here can be utilized for determination of the functional contribution of various proteins to induction of cell death by their protein partners in cases when constitutive knockdown may be cell lethal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号