首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Dabert  G. R. Smith 《Genetics》1997,145(4):877-889
During conjugation and transduction of Escherichia coli even numbers of recombinational exchanges are required for replacement of a gene on the circular chromosome. We studied gene replacement using a related method of gene transfer (transformation with 6.5-kb linear DNA fragments) as an experimental model for conjugation and transduction. Two properly situated Chi sites, 5' GCTGGTGG 3', stimulated gene replacement ~50-fold, more than the sum of the stimulation by the individual Chi sites. Gene replacement was dependent on RecA and RecB functions. Similar results were obtained with an alternative experimental model in which linear DNA fragments were generated from phage λ by intracellular EcoRI restriction following infection. Dual Chi site-stimulation of these RecA-, RecB-dependent recombination events thus did not depend upon the mode of delivery of the linear DNA into the cells. A single DNA fragment with two Chi sites was sufficient for gene replacement. These results support a one Chi-one exchange hypothesis (``long chunk' gene replacement), stemming from studies with purified RecBCD enzyme, and argue against models in which Chi converts RecBCD enzyme to a state capable of promoting multiple exchanges on one DNA molecule. These results also provide a method for gene targeting in wild-type E. coli and suggest a method for gene targeting in other organisms.  相似文献   

2.
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.  相似文献   

3.
Summary In this paper are studied in E. coli K12 the influence of the bacterial Rec and phage Red recombination systems on the rescue of the O + gene from the prophage by a superinfecting O - phage, UV irradiated or not. In the absence of UV irradiation the Red system produces more recombinants that does the Rec system, and its action requires DNA replication. The presence of UV lesions in the DNA facilitates the action of the Rec system, which is more efficient in this instance than the Red system and can act in the absence of DNA replication. In all cases, there is a cooperation between the two generalized recombination systems.  相似文献   

4.
5.
Under certain conditions the late genes of coliphage T4 may function in the absence of phage DNA replication. Quasi-late gene function is the function of certain late genes in the absence of both phage DNA replication and the product of the maturation gene 55. It does not depend on how phage DNA synthesis is prevented. Replication-uncoupled late gene function is late gene function from unreplicated DNA in the absence of phage ligase, and is still under the control of gene 55. It is most efficient if phage DNA replication is prevented by a mutation in the phage gene (43) for DNA polymerase. Both quasi-late gene function and replication-uncoupled late gene function are enhanced by the presence of mutations controlling a phage exonuclease (gene 46 or 47).  相似文献   

6.
Sun JZ  Julin DA  Hu JS 《Biochemistry》2006,45(1):131-140
The 30 kDa C-terminal domain of the RecB protein (RecB30) has nuclease activity and is believed to be responsible for the nucleolytic activities of the RecBCD enzyme. However, the RecB30 protein, studied as a histidine-tagged fusion protein, appeared to have very low nucleolytic activity on single-stranded (ss) DNA [Zhang, X. J., and Julin, D. A. (1999) Nucleic Acids Res. 27, 4200-4207], which raised the question of whether RecB30 was indeed the sole nuclease domain of RecBCD. Here, we have purified the RecB30 protein without a fusion tag. We report that RecB30 efficiently degrades both linear and circular single- and double-stranded (ds) DNA. The endonucleolytic cleavage of circular dsDNA is consistent with the fact that RecB30 has amino acid sequence similarity to some restriction endonucleases. However, endonuclease activity on dsDNA had never been seen before for RecBCD or any fragments of RecBCD. Kinetic analysis indicates that RecB30 is at least as active as RecBCD on the ssDNA substrates. These results provide direct evidence that RecB30 is the universal nuclease domain of RecBCD. The fact that the RecB30 nuclease domain alone has high intrinsic nuclease activity and can cleave dsDNA endonucleolytically suggests that the nuclease activity of RecB30 is modulated when it is part of the RecBCD holoenzyme. A new model has been proposed to explain the regulation of the RecB30 nuclease in RecBCD.  相似文献   

7.
The RecBCD enzyme of Escherichia coli consists of three subunits RecB, RecC and RecD. RecBCD enzyme activities are regulated by its interaction with recombination hotspot Chi. Biochemical and genetic evidence suggest that interaction with Chi affects RecD subunit, and that RecD polypeptide overproduction antagonizes this interaction, suggesting that intact RecD replaces a Chi-modified one. We used bacteria with fragmented chromosomes due to double-strand breaks inflicted by UV and gamma-irradiation to explore in which way increased concentrations of RecBCD's individual subunits affect DNA metabolism. We confirmed that RecD overproduction alters RecBCD-dependent DNA repair and degradation in E. coli. Also, we found that RecB and RecC overproduction did not affect these processes. To determine the basis for the effects of RecD polypeptide overproduction, we monitored activities of RecBCD enzyme on gamma-damaged chromosomal DNA and, in parallel, on lambda and T4 2 phage DNA duplexes provided at intervals. We found that gamma-irradiated wild-type bacteria became transient, and RecD overproducers permanent recB(-)/C(-) phenocopies for processing phage DNA that is provided in parallel. Since this inability of irradiated bacteria to process extrachromosomal DNA substrates coincided in both cases with ongoing degradation of chromosomal DNA, which lasted much longer in RecD overproducers, we were led to conclude that the RecB(-)/C(-) phenotype is acquired as a consequence of RecBCD enzyme titration on damaged chromosomal DNA. This conclusion was corroborated by our observation that no inhibition of RecBCD activity occurs in gamma-irradiated RecBCD overproducers. Together, these results strongly indicate that RecD overproduction prevents dissociation of RecBCD enzyme from DNA substrate and thus increases its processivity.  相似文献   

8.
Bacteriophage lambda with mutations in genes that control prohead assembly and other head precursors cannot mature their DNA. In this paper we present evidence that the failure of these phage mutants to mature DNA is a reflection of a mechanism that modulates terminase nicking activity during normal phage development. We have constructed plasmids that contain the lambda-cohesive end site (cos) and the genes that code for DNA terminase, the enzyme that matures DNA by cutting at cos. The DNA terminase genes are under control of a thermosensitive cI repressor. These plasmids lack most of the genes involved in prohead morphogenesis and other head precursors. However, when repression is lifted by destruction of the thermosensitive repressor, the terminase synthesized is able to cut almost 100% of the plasmids. Therefore, these plasmids can mature in the absence of proheads and other head gene products. The plasmids are also able to complement mutants of lambda deficient in terminase and DNA maturation. However, in these complementation experiments, if the phage carry mutations in prohead genes E or B, not only is phage DNA maturation blocked, but the plasmid also fails to mature. These experiments show that, in the absence of proheads, phage lambda produces a trans-acting inhibitor of maturation. The genetic determinant of this inhibitor maps in a region extending from the middle of gene B to the end of gene C. A model is proposed in which the nicking activity of DNA-bound terminase is inhibited by the trans-acting inhibitor. Prohead (and other factors) binding to this complex would release the block to allow DNA cleavage and packaging.  相似文献   

9.
10.
Hotspots for generalized recombination in the Escherichia coli chromosome.   总被引:8,自引:0,他引:8  
A naturally occurring hotspot for Rec recombination of Escherichia coli was located in the biotin operon. The phenotypes of the bio hotspot as observed in λbio transducing phage were identical to those of Chi mutations in phage λ. In addition to recA+ function, the site-specific stimulation of recombination required recB+ function. The stimulation took place when the hotspot was present in only one parent of the cross and even when present opposite a region of heterology.The demonstration of a Chi element in E. coli provoked us to measure the density of Chi elements on the chromosome. E. coli DNA sampled in λ transducing phage (either obtained by induction of secondary site lysogens or made in vitro from EcoRI cleavage fragments) showed one hotspot per 5 to 15 × 103 bases. The high density and the fact that Chi stimulation of recombination can span the inter-Chi distance suggest that Chi might be important in Rec recombination in the absence of λ.  相似文献   

11.
The interaction between transformation and prophages of HP1c1, S2, and a defective phage of Haemophilus influenzae has been investigated by measurement of (i) the effect of prophage on transformation frequency and (ii) the effect of transformation on phage induction. The presence of any of the prophages does not appreciably alter transformation frequencies in various Rec(+) and Rec(-) strains. However, exposure of competent lysogens to transforming deoxyribonucleic acid (DNA) may induce phage but only in Rec(+) strains, which are able to integrate transforming DNA into their genome. Transformation of Rec(+) lysogens with DNA irradiated with ultraviolet (UV) light causes the production of even more phage than results from unirradiated DNA, but this indirect UV induction is not as effective as direct induction by UV irradiation of lysogens. Both types of UV induction are influenced by the repair capacity of the host. Wild-type cells contain a prophage and can be induced by transformation to produce a defective phage, which kills a small fraction of the cells. Defective phage in wild-type cells are also induced by H. parainfluenzae DNA, and a much larger fraction of the cells is killed. Strain BC200, which is highly transformable but is not inducible for defective phage, is not killed by H. parainfluenzae DNA, suggesting that wild-type cells are killed by killed by this DNA because of phage induction. A minicell-producing mutant, LB11, has been isolated. Some phage induction occurs in this strain when the cells are made competent, unlike the wild type. A large majority of LB11 cells surviving the competence regime are killed by exposure to transforming DNA.  相似文献   

12.
Faithful repair of DNA double-strand breaks by homologous recombination is crucial to maintain functional genomes. The major Escherichia coli pathway of DNA break repair requires RecBCD enzyme, a complex protein machine with multiple activities. Upon encountering a Chi recombination hotspot (5′ GCTGGTGG 3′) during DNA unwinding, RecBCD's unwinding, nuclease, and RecA-loading activities change dramatically, but the physical basis for these changes is unknown. Here, we identify, during RecBCD's DNA unwinding, two Chi-stimulated conformational changes involving RecC. One produced a marked, long-lasting, Chi-dependent increase in protease sensitivity of a small patch, near the Chi recognition domain, on the solvent-exposed RecC surface. The other change was identified by crosslinking of an artificial amino acid inserted in this RecC patch to RecB. Small-angle X-ray scattering analysis confirmed a major conformational change upon binding of DNA to the enzyme and is consistent with these two changes. We propose that, upon DNA binding, the RecB nuclease domain swings from one side of RecC to the other; when RecBCD encounters Chi, the nuclease domain returns to its initial position determined by crystallography, where it nicks DNA exiting from RecC and loads RecA onto the newly generated 3′-ended single-stranded DNA during continued unwinding; a crevice between RecB and RecC increasingly narrows during these steps. This model provides a physical basis for the intramolecular “signal transduction” from Chi to RecC to RecD to RecB inferred previously from genetic and enzymatic analyses, and it accounts for the enzymatic changes that accompany Chi's stimulation of recombination.  相似文献   

13.
A M Slutskii  V K Gordeev 《Genetika》1978,14(10):1706-1713
Effects of mutations in genes PolA, RecA, RecB and RecC of Escherichia coli on the recombination frequencies between rII markers of T4 have been studied in conditions of partial inhibition of some early functions. It was found that the presence of the mutations in genes PolA or RecA decreased significantly the recombination frequency of phage amber mutant in the gene 43 (DNA polymerase), increased it in the case of amber mutation in the gene 46 (exonuclease) and had no effect on the recombination of amber mutants in genes 30, 32, 33, 41, 42, 45, 44, 52. None of the amber mutants studied changed recombination frequencies in the presence of the mutations in genes RecB or RecC. Possible mechanisms of some of the effects observed are discussed.  相似文献   

14.
Extracts of DNA polymerase I defective Escherichia coli infected with phage T4 contain an exonuclease activity that removes thymine dimers from UV-irradiated DNA previously nicked with T4 UV endonuclease. This activity is not expressed if cells are infected in the presence of chloramphenicol. The enzyme has a requirement for divalent cation and is not affected by caffeine, but excision is inhibited in the presence of proflavine. The enzyme is present in all phage T4 mutants thus far examined, including 25 UV-sensitive mutants isolated during the course of the experiments, all of which are defective in the v gene. A similar activity can be detected in cells infected with phages T2, T3, and T6, but not in cells infected with phage T7.  相似文献   

15.
Chi-Stimulated Recombination between Phage λ and the Plasmid λdv   总被引:4,自引:4,他引:0       下载免费PDF全文
Chi promotes Rec-mediated recombination between phage lambda DNA and the homologous plasmid lambda dv. In the absence of Chi, some of the interactions splice lambda dv into lambda, whereas others patch information from lambda dv into lambda. When Chi is in the phage DNA, splices and patches are increased in frequency by the same factor. This result strengthens the analogy between Chi and recombination-promoting elements in fungi. It also rules out one model for the previously reported orientation dependence of Chi phenotype.  相似文献   

16.
Homologous recombination and double-stranded DNA break repair in Escherichia coli are initiated by the multifunctional RecBCD enzyme. After binding to a double-stranded DNA end, the RecBCD enzyme unwinds and degrades the DNA processively. This processing is regulated by the recombination hot spot, Chi (chi: 5'-GCTGGTGG-3'), which induces a switch in the polarity of DNA degradation and activates RecBCD enzyme to coordinate the loading of the DNA strand exchange protein, RecA, onto the single-stranded DNA products of unwinding. Recently, a single mutation in RecB, Asp-1080 --> Ala, was shown to create an enzyme (RecB(D1080A)CD) that is a processive helicase but not a nuclease. Here we show that the RecB(D1080A)CD enzyme is also unable to coordinate the loading of the RecA protein, regardless of whether chi sites are present in the DNA. However, the RecB(D1080A)CD enzyme does respond to chi sites by inactivating in a chi-dependent manner. These data define a locus of the RecBCD enzyme that is essential not only for nuclease function but also for the coordination of RecA protein loading.  相似文献   

17.
The RecB subunit of the Escherichia coli RecBCD enzyme has been shown in previous work to have two domains: an N-terminal 100 kDa domain with ATP-dependent helicase activity, and a C-terminal 30 kDa domain. The 30 kDa domain had nuclease activity when linked to a heterologous DNA binding protein, but by itself it appeared unable to bind DNA and lacked detectable nuclease activity. We have expressed and isolated this 30 kDa domain, called RecB(N), and show that it does have nuclease activity detectable at high protein concentration in the presence of polyethylene glycol, added as a molecular crowding agent. The activity is undetectable in a mutant RecB(N)protein in which an aspartate residue has been changed to alanine. Structural analysis of the wild-type and mutant RecB(N)proteins by second derivative absorbance and circular dichroism spectroscopy indicates that both are folded proteins with very similar secondary and tertiary structures. The results show that the Asp-->Ala mutation has not caused a significant structural change in the isolated domain and they support the conclusion that the C-terminal domain of RecB has the sole nuclease active site of RecBCD.  相似文献   

18.
Double-Length, Circular, Single-Stranded DNA from Filamentous Phage   总被引:1,自引:1,他引:0  
Wild-type and gene 3 mutant filamentous phage stocks, containing different relative amounts of multiple-length particles, were treated exhaustively with DNase and then were highly purified. The phage DNA was extracted and examined by electron microscopy. In all cases, about 0.03% of the molecules were circular dimers. (3)H-labeled phage DNA was separated as to size by sedimentation in a preformed CsCl density gradient. Individual fractions were then examined in the electron microscope, and the percentage of linear and circular monomer and dimer DNAs was determined. A peak of double-length, circular molecules (with the expected sedimentation constant of 38S) was found ahead of the 24S monomer peak. The double-length molecules had been purified 65-fold. As previously found for single-stranded DNA, the contour length of these molecules was strongly dependent upon ionic strength. Possible artifacts were ruled out, and it was shown that the double-length molecules arose from phage particles.  相似文献   

19.
Infecting bacteriophage mu DNA forms a circular DNA-protein complex   总被引:6,自引:0,他引:6  
Upon superinfection of immune (lysogenic) cells with bacteriophage Mu, a form of Mu DNA accumulates that sediments about twice as fast as the linear phage DNA marker in neutral sucrose gradients. This form is also detected upon infection of sensitive cells with Mu. We have purified it and examined its physical nature. Under the electron microscope it appears circular and supertwisted. Upon treatment with Pronase, phenol or sodium dodecyl sulfate, however, it is converted to a linear Mu-length form, indicating that the circle is not covalently closed. The linear DNA still has heterogeneous host sequences at its termini. The circular DNA is resistant to the action of Escherichia coli exonuclease III and T7 exonuclease, but becomes sensitive to these nucleases after treatment with Pronase showing the presence of a protein that binds non-covalently to the ends of the DNA to circularize it as well as protect it from digestion with exonucleases. The complex is resistant to high salt (up to 6 M-NaCl) but can undergo transitions between forms that are partially open, open circular, linear and circular dimers and trimers. Examination of DNA from mature phage particles reveals that a circular DNA species is present in at least 0.1 to 1% of the population. The purified complex is extremely efficient in transfection of E. coli spheroplasts. We estimate the molecular weight of the protein in this DNA-protein complex to be approximately 64,000, and suggest that this complex might represent the integrative precursor of infecting Mu DNA.  相似文献   

20.
The RecB subunit of the Escherichia coli RecBCD enzyme has previously been reported to possess DNA-dependent ATPase activity (Hickson, I. D., Robson, C. N., Atkinson, K. E., Hutton, L., and Emmerson, P. T. (1985) J. Biol. Chem. 260, 1224-1229). Here we demonstrate that a specific interaction between RecB protein and ATP can also be shown by photoaffinity labeling with the ATP analogue 8-azido-ATP. Furthermore, the capacity of the RecB protein to support ATP hydrolysis varies with the structure and length of the DNA cofactor. Single-stranded linear and circular DNA are markedly better in promoting ATP hydrolysis than duplex DNA. The purified RecB protein can function as a DNA helicase, displacing oligonucleotides annealed to viral M13 DNA in an ATP-dependent and orientation-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号