首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Stream restorations that increase geomorphic stability can improve habitat quality, which should benefit selected species and local aquatic ecosystems. This assumption is often used to define primary restoration goals; yet, biological responses to restoration are rarely monitored or evaluated methodically. Macroinvertebrate communities were inventoried at 6 study reaches within 5 Catskill Mountain streams between 2002 and 2006 to characterize their responses to natural‐channel‐design (NCD) restoration. Although bank stability increased significantly at most restored reaches, analyses of variation showed that NCD restorations had no significant effect on 15 of 16 macroinvertebrate community metrics. Multidimensional scaling ordination indicated that communities from all reach types within a stream were much more similar to each other within any given year than they were in the same reaches across years or within any type of reach across streams. These findings indicate that source populations and watershed‐scale factors were more important to macroinvertebrate community characteristics than were changes in channel geomorphology associated with NCD restoration. Furthermore, the response of macroinvertebrates to restoration cannot always be used to infer the response of other stream biota to restoration. Thus, a broad perspective is needed to characterize and evaluate the full range of effects that restoration can have on stream ecosystems.  相似文献   

2.
Human activities have led to declines in stream functioning and stream restoration seeks to reverse this trend. Longwall coal mining, an underground full‐extraction method, can cause surface subsidence, affecting streams by creating a series of deep pools that trap sediment, reduce habitat diversity, and impair macroinvertebrate and fish communities. Mining effects on streams must be mitigated to maintain the functions, values, and foreseeable uses of streams. Gate cutting is a procedure that alleviates pooling by reestablishing the stream grade, accompanied by procedures that stabilize the channel, restore substrates, and enhance in‐stream and riparian habitats. We evaluated effectiveness of gate cuts at restoring streams affected by subsidence pooling at 18 independent restoration sites over two mines in southwestern Pennsylvania, U.S.A. At each site, sampling stations were established to monitor effects of mining subsidence and its restoration on macroinvertebrates, fish communities, and habitats. We tested for effects of sequential interventions (subsidence and restoration) on biological and habitat variables in a replicated before–after design, controlling for potentially confounding temporal effects (sample month and antecedent effective precipitation). All biological indices and substrate‐related habitat indices declined following subsidence but improved following restoration. Macroinvertebrate indicex and taxa richness, substrates, and riparian vegetation continued to improve with time following restoration. Whereas other studies have concluded that biological communities may take many years to respond to restoration, these results indicate that where macroinvertebrate and fish communities are altered by subsidence pooling, they can be effectively restored using gate cuts to pre‐mining levels within relatively short time periods.  相似文献   

3.
We studied the recovery of periphyton and macroinvertebrate communities in a second order stream after a month-long spate that began as increased discharge due to snowmelt in April 2000 but continued through May as a result of frequent rainstorms. We sampled macroinvertebrates and periphyton in June 2000 at three different sites—an upstream site in a conifer tree plantation, a second site ca. 800 m downstream in a mixed hardwood forest, and a third site ca. 1.4 km downstream where there was an open canopy. Periphyton abundance was low on 6 June at all sites but increased 10-fold at the open canopy site the following week (13 June), appearing as a thick mat of Ulothrix. By 26 June, periphyton biomass (as both chlorophyll a and ash free dry mass) had decreased by 80% whereas densities of Chironomidae increased 50-fold and Baetidae increased 4-fold at the open canopy site; little change had occurred in periphyton and macroinvertebrate communities at the forested sites from early to late June. Our results suggest that baetids and chironomids rapidly responded to the increased algal resource at the open canopy site due to their life history characteristics and high growth rates. Chironomids decreased the green mat of Ulothrix by using this alga in tube construction and both chironomids and baetids likely consumed this alga. The varied responses of the periphyton and macroinvertebrate communities at the forested versus open sites demonstrate a resistance to impacts by floods at the forested sites, whereas at the open canopy site periphyton and macroinvertebrate communities were more resilient to the flood disturbance. Handling editor: R. Bailey  相似文献   

4.
1. Pacific salmon (Oncorhynchus spp.) deliver marine‐derived nutrients to the streams in which they spawn and die, and these resource subsidies can increase the abundance of stream biota. In strong contrast, physical disturbance from salmon spawning activity can reduce the abundance of benthic organisms. Previous experimental designs have not established the relative effects of these two contrasting processes on stream organisms during a salmon run. 2. We combined manipulative and observational field studies to assess the degree of nutrient enrichment, physical disturbance, and the net effect of salmon on the abundance of benthic periphyton. Related salmon‐mediated processes were also evaluated for benthic macroinvertebrates. Mesh exclosures (2 × 2 m plots) prevented salmon from disturbing areas of the stream channel, which were compared with areas to which salmon had access. Sampling was conducted both before and during the late‐summer spawning run of pink (O. gorbushca) and chum (O. keta) salmon. 3. Streamwater nitrogen and phosphorus concentrations increased sharply with the onset of the salmon run, and highly significant positive relationships were observed between the numbers of salmon present in the stream and these dissolved nutrients. Before the salmon run, periphyton biomass (as chlorophyll a) and total macroinvertebrate abundance were very similar between control and exclosure plots. During the salmon run, exclosures departed substantially from controls, suggesting significant disturbance imparted on benthic biota. 4. Comparing exclosures before and during the salmon run enabled us to estimate the effects of salmon in the absence of direct salmon disturbance. This ‘nutrient enrichment potential’ was significant for periphyton biomass, as was a related index for macroinvertebrate abundance (although enhanced invertebrate drift into exclosures during the salmon run could also have been important). Interestingly, however, the net effect of salmon, evaluated by comparing control plots before and during the salmon run, was relatively modest for both periphyton and macroinvertebrates, suggesting that nutrient enrichment effects were largely offset by disturbance. 5. Our results illustrate the importance of isolating the specific mechanisms via which organisms affect ecosystems, and indicate that the relative magnitude of salmon nutrient enrichment and benthic disturbance determines the net effect that these ecologically important fish have on stream ecosystems.  相似文献   

5.
Roads and associated stream crossings can modify and degrade natural hydrology of a system and alter organism movement. Culvert replacement and stream crossing improvements are extremely common and often done with the intent to improve biotic integrity of a system. We evaluated 3 sites where poor road‐stream crossings were improved by replacing improper culverts with full‐span natural bottom structures. We used a before‐after‐control‐impact paired series (BACIPS) design to determine if there was evidence of associated improvement in biotic integrity of the stream communities. Biotic integrity indices developed for coldwater fish and macroinvertebrates in the Northern Lakes and Forests Ecoregion were used to estimate responses of the biotic communities adjacent to culvert replacements. With poor to fair fish and macroinvertebrate communities prior to culvert replacement, we predicted communities would show improvement into the good range of the indices. With 2–4 years of pre‐data and 3–5 years of postdata, we were not able to detect improvements in overall biotic integrity utilizing fish or macroinvertebrate index scores. Road crossing improvements may synergistically restore stream ecosystems, restore natural sediment dynamics, and improve passage; however, in these cases local biotic integrity scores were not significantly improved. Culvert replacements are often developed based on the potential, or the perception, that they will restore ecological integrity and biological communities or fisheries; however, as restoration practitioners, researchers, and managers, assessing these claims and learning from prior restoration attempts is necessary.  相似文献   

6.
Studies assessing stream restoration of acid mine drainage (AMD) usually use community metrics that emphasize only a few attributes of ecological integrity. We used a variety of measures to examine recovery of macroinvertebrate communities in a watershed receiving passive treatment for AMD. We measured density, richness, functional diversity (FD), taxonomic diversity (Δ, a measure of taxonomic relatedness), and community taxonomic composition at 4 stream sites over an 11‐year period: 1 reference not affected by AMD, 2 downstream of treatment systems, and 1 AMD‐impacted site with no treatment. Our objectives were to determine if communities have responded to remediation, and examine whether FD and Δ provided additional insights into ecology integrity. Richness, FD, and Δ at the reference site were significantly higher than for other sites, but did not consistently differentiate treated and untreated sites. Additional information provided by FD and Δ on attributes related to functional redundancy and taxonomic relatedness was self‐evident given the simplicity of nonreference communities. Ordination of community composition incorporating knowledge of taxa autecologies indicated that treated sites were slightly less impacted than the untreated site, and trend analysis indicated slight improvement at 1 treated site. However, communities below treatment remained taxonomically distinct, with much lower densities than reference condition. Macroinvertebrate communities showed less recovery than was determined for benthic diatom communities at the same sites in a previous study. Several attributes of ecological integrity for different types of stream organisms should be incorporated into bioassessment of AMD restoration because they can vary in their response.  相似文献   

7.
Channel reconfiguration is one of the most common and costly stream restoration techniques, though its effectiveness is frequently questioned. Project monitoring often tracks changes in macroinvertebrate communities and other responses for a 5‐year period. However, channel reconfiguration is a documented disturbance to stream ecosystems, suggesting that this form of restoration initiates succession over longer time frames than monitoring typically captures. To address the role of succession in stream ecosystem recovery, we developed the Phased Recovery Framework (PRF) which proposes benchmarks represented by predictable habitat structure and community composition based on project age. The PRF was tested across nine stream restoration projects in western Montana, ranging in age from 1 to 18 years, each paired with an established reference system. We tested for differences in channel form, habitat character, and macroinvertebrate community composition. While restoration established desired channel form, most biotic variables had not recovered to reference condition even for the oldest projects. Across all sites, phases of the PRF were poor predictors of response. However, analyzing responses to reconfiguration independently for sites in watersheds with unimpaired water quality versus those experiencing excessive nutrient enrichment (i.e. impaired sites) indicated that biological variables converged on reference conditions at unimpaired sites, but diverged across impaired reaches. These large‐scale anthropogenic influences may play a stronger role in recovery than do changes to channel form and need to be incorporated into project design and success criteria. Assessment of the PRF suggests that short‐term monitoring is not likely to produce reliable indicators of effectiveness without incorporating locally appropriate change associated with watershed impairment and successional progression.  相似文献   

8.
Warfe DM  Barmuta LA 《Oecologia》2006,150(1):141-154
A considerable amount of research has investigated the influence of habitat structure on predator success, yet few studies have explored the implications for community structure and food-web dynamics. The relative importance of macrophyte structure and fish predation on the composition of the macroinvertebrate and periphyton communities in a lowland river was investigated using a multifactorial caging experiment. We hypothesised that: (1) fish predators are less effective in a more structurally complex macrophyte analogue; (2) strong direct and indirect effects of fish predators (e.g. trophic cascades) are less likely to occur in a structurally complex habitat; and (3) the strength of these patterns is influenced by the composition of the prevailing community assemblage. We measured the abundance and composition of the macroinvertebrate and periphyton communities associated with three different-shaped macrophyte analogues, under different fish predator treatments and at different times. Macrophyte analogue architecture had strong, consistent effects on both the macroinvertebrate and periphyton communities; both were most abundant and diverse on the most structurally complex plant analogue. In contrast, the fish predators affected only a subset of the macroinvertebrate community and there was a suggestion of minor indirect effects on periphyton community composition. Contrary to expectations, the fish predators had their strongest effects in the most structurally complex macrophyte analogue. We conclude that in this system, macrophyte shape strongly regulates the associated freshwater assemblage, resulting in a diverse community structure less likely to exhibit strong effects of fish predation.  相似文献   

9.
10.
Riparian vegetation is known to affect aquatic macroinvertebrate communities through contributions of organic matter and shading. Despite the widespread degradation of riparian vegetation in Australia, there are relatively few studies examining the effect of changes in riparian vegetation on in-stream macroinvertebrate assemblages on individual catchments. In particular, information is lacking on the responses of macroinvertebrate communities in catchments dominated by agriculture, where farms that are managed at the paddock scale result in riparian vegetation condition varying over relatively short distances. In this study, macroinvertebrate assemblages were assessed from 12 reaches along a 25-km section of a small agricultural stream in south-eastern Australia. Riparian condition was assessed using in-stream coarse woody debris (CWD) levels and the rapid appraisal of riparian condition (RARC) index, a numerical system for categorising the health of riparian areas that incorporates sub-indices reflecting habitat continuity, vegetation cover, plant debris levels, native vegetation dominance, and other indicative features. There was a significant positive correlation between RARC scores and macroinvertebrate taxon richness (p < 0.01), and also between CWD scores and macroinvertebrate taxon richness (p < 0.05). In contrast, there was no significant correlation observed between riparian condition and the other macroinvertebrate indices (abundance, Shannon diversity, SIGNAL and SIGNAL2). Macroinvertebrate communities were significantly different in stream reaches from different riparian condition categories (ANOSIM; p < 0.05). Our results indicate that efforts to rehabilitate riparian vegetation may have a positive effect on in-stream biota even when implemented at a relatively small scale by individual landholders.  相似文献   

11.
Two stable isotopes δ13C and δ15N were used to identify the energy sources and trophic relationships of the main freshwater macroinvertebrates in a floodplain lake of the Beni River (Bolivian Amazonia). Four energy sources (seston, bottom sediment, periphyton, and aquatic macrophytes) and macroinvertebrate communities were collected during three periods of the river hydrological cycle. Macroinvertebrates showed greater temporal variation in isotope values than their food sources. Six trophic chains were identified: four were based on seston, periphyton, C3 macrophytes, and bottom sediments, and the last two chains on a combination of two carbon sources. One mixed seston and periphyton sources during the wet season while the other mixed periphyton and macrophytes sources during the wet and dry seasons. Periphyton was the most important energy source supporting the highest number of trophic levels and consumers. The macrophytic contribution was only significant during the dry season. Bottom sediments constituted a marginal energy source. As each season is associated with different physical and chemical conditions, processes organizing macroinvertebrate food web structure in the Beni floodplain seem strongly linked to hydrological seasonality.  相似文献   

12.
1. We measured responses in macroinvertebrate secondary production after large wood additions to three forested headwater streams in the Upper Peninsula of Michigan. These streams had fine‐grained sediments and low retention capacity due to low amounts of in‐channel wood from a legacy of past logging. We predicted that wood addition would increase macroinvertebrate secondary production by increasing exposed coarse substrate and retention of organic matter. 2. Large wood (25 logs) was added haphazardly to a 100‐m reach in each stream, and a 100‐m upstream reach served as control; each reach was sampled monthly, 1 year before and 2 years after wood addition (i.e. BACI design). Macroinvertebrate secondary production was measured 1 year after wood addition in two habitat types: inorganic sediments of the main channel and debris accumulations of leaf litter and small wood. 3. Overall macroinvertebrate production did not change significantly because each stream responded differently to wood addition. Production increased by 22% in the main‐channel of one stream, and showed insignificant changes in the other two streams compared to values before wood addition. Changes in main‐channel macroinvertebrate production were related to small changes in substrate composition, which probably affected habitat and periphyton abundance. Macroinvertebrate production was much greater in debris accumulations than in the main‐channel, indicating the potential for increased retention of leaf litter to increase overall macroinvertebrate production, especially in autumn. 4. Surrounding land use, substrate composition, temperature and method of log placement are variables that interact to influence the response of stream biota to wood additions. In most studies, wood additions occur in altered catchments, are rarely monitored, and secondary production is not a common metric. Our results suggest that the time required for measurable changes in geomorphology, organic matter retention, or invertebrate production is likely to take years to achieve, so monitoring should span more than 5 years, and ecosystem metrics, such as macroinvertebrate secondary production, should be incorporated into restoration monitoring programs.  相似文献   

13.
This study examined the inter-annual variation in macroinvertebrate assemblages in six wilderness streams in central Idaho over a 6-year period (1990–1995). Benthic macroinvertebrates and associated environmental correlates were sampled during baseflow each summer. Little environmental change, as assessed using coefficients of variation (CVs) for substrate size and embeddedness, width, depth and periphyton standing crops, occurred in the streams over the period of study. There was also little temporal change in macroinvertebrate assemblages based on the relative abundance of the 10 most abundant taxa, all shredder taxa and all plecopteran taxa. CVs for individual taxa were substantially greater than those of most community measures, with rare taxa contributing 30–50% of the variation for any one stream. Frequency distributions for taxa CVs excluding rare taxa were more normally distributed. Differences in assemblage structure among streams were attributed to stream size (shift in shredder assemblages) and temperature (shift in plecopteran taxa). These data indicate a long-term (multi-year) persistence in the macroinvertebrate composition of these pristine streams, thus supporting the premise that such streams are excellent references for use in long-term biomonitoring programs.  相似文献   

14.
1. The catchments of three acidified streams in mid Wales were limed in 1987/88. Here we assess their chemical and biological response in comparison with unmanipulated reference streams over a period of 5 years post-liming. 2. Stream chemistry was measured weekly/fortnightly between 1985 and 1992, while macroinvertebrates were sampled annually. Colonization by acid-sensitive taxa was assessed and trends in community structure were monitored by TWINSPAN. Real biological responses were compared with those predicted by an empirical model constructed using chemical data. 3. There were marked changes in stream chemistry following liming: calcium concentrations and pH values increased, while aluminium concentrations decreased to levels similar to those in naturally circumneutral streams. These conditions have persisted since liming. 4. Empirical models predicted that stream invertebrates would respond to the altered stream chemistry, with the establishment of communities typical of circumneutral conditions. 5. Following liming, the taxon richness and abundance of acid-sensitive taxa was significantly higher in limed compared with reference streams. Colonization by, and persistence of acid-sensitive taxa was patchy, however, and richness was still substantially lower than in naturally circumneutral streams. Moreover, contrary to the model predictions, there were no wholesale changes in the structure of macroinvertebrate communities. 6. We conclude that liming has created and maintained chemical conditions suitable for macroinvertebrate communities typical of circumneutral streams, but these chemical changes have not been matched by sustained responses among the biota. The views expressed in this article are those of the authors and do not necessarily reflect those of the NRA.  相似文献   

15.
Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems.  相似文献   

16.
Limited stream chemistry and macroinvertebrate data indicate that acidic deposition has adversely affected benthic macroinvertebrate assemblages in numerous headwater streams of the western Adirondack Mountains of New York. No studies, however, have quantified the effects that acidic deposition and acidification may have had on resident fish and macroinvertebrate communities in streams of the region. As part of the Western Adirondack Stream Survey, water chemistry from 200 streams was sampled five times and macroinvertebrate communities were surveyed once from a subset of 36 streams in the Oswegatchie and Black River Basins during 2003–2005 and evaluated to: (a) document the effects that chronic and episodic acidification have on macroinvertebrate communities across the region, (b) define the relations between acidification and the health of affected species assemblages, and (c) assess indicators and thresholds of biological effects. Concentrations of inorganic Al in 66% of the 200 streams periodically reached concentrations toxic to acid-tolerant biota. A new acid biological assessment profile (acidBAP) index for macroinvertebrates, derived from percent mayfly richness and percent acid-tolerant taxa, was strongly correlated (R2 values range from 0.58 to 0.76) with concentrations of inorganic Al, pH, ANC, and base cation surplus (BCS). The BCS and acidBAP index helped remove confounding influences of natural organic acidity and to redefine acidification-effect thresholds and biological-impact categories. AcidBAP scores indicated that macroinvertebrate communities were moderately or severely impacted by acidification in 44–56% of 36 study streams, however, additional data from randomly selected streams is needed to accurately estimate the true percentage of streams in which macroinvertebrate communities are adversely affected in this, or other, regions. As biologically relevant measures of impacts caused by acidification, both BCS and acidBAP may be useful indicators of ecosystem effects and potential recovery at the local and regional scale.  相似文献   

17.
  1. Understanding changes in macroinvertebrate communities is important because they play a large role in stream ecosystem functioning, and they are an important food resource for fish. Beaver-induced changes to stream morphology could alter macroinvertebrate communities, which in turn could affect food webs and ecosystem function. However, studies investigating the effects of North American beaver activities on macroinvertebrates are rare in the inter-mountain west, an area with high potential for beaver-assisted restoration.
  2. The aim of this study was to quantify differences in the macroinvertebrate community between unaltered segments of streams and within beaver ponds in north-eastern Utah, U.S.A. We assessed macroinvertebrate species richness, biomass, density, functional feeding group composition, mobility group composition, and macroinvertebrate habitat characteristics to test the hypothesis that macroinvertebrate communities will differ among habitat types (undammed stream segments and beaver ponds) in beaver-occupied streams.
  3. Beaver pond communities significantly differed from lotic reach communities in many ways. Beaver ponds were less diverse with 25% fewer species. Although there was variability among streams, in general, beaver ponds had 75% fewer individuals and 90% lower total macroinvertebrate biomass compared to lotic reaches.
  4. Regarding functional feeding groups, beaver ponds contained more engulfers, while lotic reaches contained more scrapers, filterers, and gatherers. For mobility groups, beaver ponds had more sprawlers, while lotic reaches had more clingers. Swimmers were also more prevalent in lotic reaches, although this is probably due to the abundance of Baetis within lotic reaches. More beaver pond taxa were classified as lentic-dwelling insects, while more lotic reach taxa were categorised as preferring lotic habitats.
  5. The creation of ponds by beavers fundamentally altered the macroinvertebrate community in north-eastern Utah streams. Such changes to stream macroinvertebrate communities suggest that recolonisation of beavers across North America may be altering stream functioning and food webs. Our study highlights the need to further investigate the effects of beaver recolonisation on stream communities.
  相似文献   

18.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

19.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

20.
To meet targets imposed by the European Water Framework Directive (2000/60/EC) it is vital that measures to improve the status of rivers are both effective and economically viable. Achievement of such aims needs robust understanding of biological responses to changes in water quality vis-à-vis mechanisms of and constraints to the colonization of previously polluted sites. This study therefore examined the long-term chemical and biological changes in historically polluted rivers to elucidate the responses of macroinvertebrate biota to improvements in chemical water quality. For three historically polluted sites in the English Midlands, data from surveys over a period of ca. 50 years were analysed. Ammonia (NH3) and 5-day biochemical oxygen demand (BOD5) were used as chemical water quality indicators. Variations in the ecological recovery of the study sites were assessed using an average pollution sensitivity score (Average Score Per Taxon) and the number of taxa present (usually to family level) present in hand-net samples. Ecological recovery varied widely and was influenced by the intensity and spatial extent of the pollution and the proximity of available sources of potential colonisers. At the site most isolated from potential sources of colonizing taxa, no clean-water macroinvertebrate taxa were recorded 30 years after the major sources of pollution ceased. Where clean-water colonisers were more readily available, significant improvements in ecological quality followed within 2–5 years of the improvements in chemical quality. Macroinvertebrate communities and hence monitoring data may thus be indicative of long past conditions or of biological isolation rather than contemporaneous chemical conditions. Combined chemical and biological data were used to explore a generic model for predicting recovery rates and success. Neither BOD5 nor NH3 were found to provide a consistent and meaningful prediction of either average pollution tolerance of macroinvertebrate taxa or of the number of taxa present. Long-term relationships between macroinvertebrate variables and chemical water quality variables, however, were non-linear, suggesting that water quality thresholds may have to be exceeded before biological recovery can occur. Even when chemical water quality has been improved substantially, the apparent ecological status of macroinvertebrate communities may not reflect reduced pollution levels attained until adequate time to allow for re-colonisation (possibly decades) has elapsed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号