共查询到20条相似文献,搜索用时 0 毫秒
1.
为了解榄仁树(Terminalia catappa)的生理生态特性,对西沙群岛永兴岛上自然生长的榄仁树的叶片形态、生理特征、营养元素含量以及根际土壤特征进行了研究。结果表明,榄仁树具有比叶面积低、叶片厚、气孔密度小等形态特征。叶绿素a/b为2.25∶1,低于理论值3∶1。叶片的SOD和POD活性较低,脯氨酸和ABA含量较高。植物体内养分含量较高,适生土壤养分含量低。这说明榄仁树叶片的吸收利用光能能力较强,保水能力较好,有较强的抗干旱和抗逆能力,适生于贫瘠的土壤并保持较高的叶片营养。因此,榄仁树是一种能够适应高温、干旱、贫瘠等恶劣生境条件的树种,可作为热带珊瑚岛植被恢复的工具种和园林绿化树种。 相似文献
2.
By use of PCR, the genes encoding d-carbamoylase from A. radiobacter TH572 were cloned in plasmid pET30a and transformed into Escherichia coli BL21 (DE3) to overexpress d-carbamoylase. However, almost all of the protein remained trapped in inclusion bodies. To improve the expression of the properly folded active enzyme, a constitutive plasmid of pGEMT-DCB was constructed using the native hydantoinase promoter (PHase) whose optimal length was confirmed to 209 bp. Furthermore, the RBS region in the downstream of PHase was optimized to increase the expression level, so the plasmid pGEMT-R-DCB was constructed and transformed into E. coli strain Top10F′. The enzyme activity of Top10F′/pGEMT-R-DCB grown at 37 °C was found to be 0.603 U/mg (dry cell weight, DCW) and increase 58-fold over cells of BL21 (DE3) harboring the plasmid pET-DCB grown at 28 °C. 相似文献
3.
Two new steroidal saponins, padelaosides A (1) and B (2), along with two other known steroidal saponins (3 and 4) were isolated from the rhizomes of Paris delavayi. Their structures were elucidated by 1D and 2D NMR techniques, HRFTMS, physical data and chemical methods. The two different absolute configurations of fucose, assigned as l and d that were found on compounds 1 and 2, respectively, were simultaneously reported in a natural medicine for the first time. 相似文献
4.
A water-soluble polysaccharide named as PRP was isolated from the fruiting bodies of Phellinus ribis by hot water extraction, DEAE-cellulose and Superdex 30 column chromatography. Its structural characteristics were investigated by FT-IR, NMR spectroscopy, GLC-MS, methylation analysis, periodate oxidation and Smith degradation. Based on the data obtained, PRP was found to be a β-d-glucan containing a (1 → 4), (1 → 6)-linked backbone, with a single β-d-glucose at the C-3 position of (1 → 6)-linked glucosyl residue every eight residues, along the main chain. The glucan has a weight-average molecular weight of about 8.59 kDa by HPGPC determination using dextran samples as the standards. Preliminary activity tests in vitro revealed that PRP could stimulate the proliferation of spleen lymphocyte. 相似文献
5.
d-Hydantoinase and d-carbamoylase genes from Agrobacterium radiobacter TH572 were cloned by polymerase chain reaction (PCR). The plasmid pUCCH3 with a polycistronic structure that is controlled by the native hydantoinase promoter was constructed to co-express the two genes and transformed into Escherichia coli strain JM105. To obtain the highest level of expression of the d-carbamoylase and avoid intermediate accumulation, the d-carbamoylase gene was cloned closer to the promoter and the RBS region in the upstream of it was optimized. This resulted in high active expression of soluble d-hydantoinase and d-carbamoylase that is obtained without any inducer. Thus, by the constitutive recombinant JM105/pUCCH3, d-p-hydroxyphenylglycine (d-HPG) was obtained directly with 95.2% production yield and 96.3% conversion yield. 相似文献
6.
该研究通过榄仁树幼苗的盆栽实验,用称重控水法设置3个水平的土壤水分含量(分别占田间持水量的75%~80%、50%~55%、30%~35%)和2个浓度水平的木麻黄凋落物浸提液,研究不同土壤干旱程度及不同浓度木麻黄凋落物浸提液对榄仁树生长、光合作用及生理生化的影响。结果表明:随着幼苗生长期的延长,土壤干旱和木麻黄凋落物浸提液对榄仁树幼苗存活率和株高增长有一定影响。60 d胁迫后显著减小了幼苗叶片数、叶面积、叶片含水量及叶片的生物量。15~60 d期间幼苗的净光合速率( Pn)、气孔导度( Ccond)、蒸腾速率( Tr)均显著减小,而幼苗叶片胞间CO2浓度( Ci)呈先减后增的变化。幼苗的水分利用率( WUE)和气孔限制值( Ls)显著增加,是导致光合作用降低的主要原因。干旱和木麻黄凋落物浸提液能显著增加榄仁树幼苗的叶片和根的细胞膜透性、Peroxidase(POD)活性及叶片Superoxide dismutase(SOD)活性。二元方差分析表明,土壤干旱和木麻黄凋落物浸提液对榄仁树的生长、光合作用及生理生化的影响有明显的交互作用且表现出一定的拮抗作用。该研究结果可为构建混交林型海防林提供参考。 相似文献
7.
Anshu Rathi Arvind Kumar Srivastava Annie Shirwaikar Ajay Kumar Singh Rawat Shanta Mehrotra 《Phytomedicine》2008,15(6-7):470-477
The present investigation demonstrates the hepatoprotective potential of 50% ethanolic water extract of whole plant of Fumaria indica and its three fractions viz., hexane, chloroform and butanol against d-galactosamine induced hepatotoxicity in rats. The hepatoprotection was assessed in terms reduction in histological damage, changes in serum enzymes (SGOT, SGPT, ALP) and metabolites bilirubin, reduced glutathione (GSH) and lipid peroxidation (MDA content). Among fractions more than 90% protection was found with butanol fraction in which alkaloid protopine was quantified as highest i.e. about 0.2 mg/g by HPTLC. The isolated protopine in doses of 10–20 mg p.o. also proved equally effective hepatoprotectants as standard drug silymarine (single dose 25 mg p.o.). In general all treatments excluding hexane fraction proved hepatoprotective at par with silymarine (p0.01). 相似文献
8.
9.
Alginate–chitosan polyelectrolyte complexes (PECs) have been used for the first time as a suitable matrix for coimmobilisation of enzymes to reproduce a multistep enzymatic route for production of d-amino acids. Encapsulation of a crude cell extract from Agrobacterium radiobacter containing d-hydantoinase and d-carbamoylase activities into the PECs with negligible leakage from the formed capsules was accomplished. All results in this study indicate that the preparation of the biocatalyst (preparation method and chitosan characteristics) play a key role in the biocatalyst's properties. The most suitable biocatalysts were prepared using a chitosan with a medium molecular weight (600 kDa) and a degree of deacetylation of 0.9. For all of the preparation conditions under study, an encapsulation yield of around 60% was achieved and the enzymatic activity yields ranged from 30 to 80% for d-hydantoinase activity and from 40 to 128% for d-carbamoylase activity relative to the activities of the soluble extract. All of the biocatalysts were able to hydrolyze l,d-hydroxyphenylhydantoin into p-hydroxyphenylglycine with yields ranging from 30 to 80%. 相似文献
10.
Pavla Simersk Marek Kuzma Daniela Monti Sergio Riva Martina Mackov Vladimír Ken 《Journal of Molecular Catalysis .B, Enzymatic》2006,39(1-4):128
The transglycosylation potential of the extracellular α-d-galactosidase from the filamentous fungus Talaromyces flavus CCF 2686, chosen as the best enzyme from the screening, was investigated using a series of sterically hindered alcohols (primary, secondary and tertiary) as galactosyl acceptors. Nine alkyl α-d-galactopyranosides derived from the following alcohols – tert-butyl alcohol, 2-methyl-2-butyl alcohol, 2-methyl-1-propyl alcohol, 2,2,2-trifluoroethyl alcohol, 2-propyn-1-ol, n-pentyl alcohol, 3,5-dihydroxybenzyl alcohol, 1-phenylethyl alcohol and 1,4-dithio-dl-threitol – were prepared on a semi-preparative scale. This demonstrates a broad synthetic potential of the T. flavus α-d-galactosidase that has not been observed with another enzyme tested. Moreover, this enzyme exhibits good transglycosylation yields (6–34%). The enzymatic synthesis of tert-butyl α-d-galactopyranoside by transglycosylation was studied in detail. 相似文献
11.
G. Simonetti E. Brasili F. D. D′Auria S. Corpolongo F. Ferrari G. Pasqua 《Plant biosystems》2017,151(5):783-787
Total extracts and kuwanon G from Morus nigra root bark showed antifungal activity against several phytopathogenic fungi, with minimal inhibitory concentration (MIC50) ranging from 32 to 128 μg/ml and from 16 to 64 μg/ml, respectively. Acetonic extracts inhibited 60% B. cinerea biofilm formation at concentration of 128 μg/ml. 相似文献
12.
13.
Zhimin Li Liudmila Kulakova Ling Li Andrey Galkin Zhiming Zhao Theodore E. Nash Patrick S. Mariano Osnat Herzberg Debra Dunaway-Mariano 《Bioorganic chemistry》2009,37(5):149-161
Giardia lamblia arginine deiminase (GlAD), the topic of this paper, belongs to the hydrolase branch of the guanidine-modifying enzyme superfamily, whose members employ Cys-mediated nucleophilic catalysis to promote deimination of l-arginine and its naturally occurring derivatives. G. lamblia is the causative agent in the human disease giardiasis. The results of RNAi/antisense RNA gene-silencing studies reported herein indicate that GlAD is essential for G. lamblia trophozoite survival and thus, a potential target for the development of therapeutic agents for the treatment of giardiasis. The homodimeric recombinant protein was prepared in Escherichia coli for in-depth biochemical characterization. The 2-domain GlAD monomer consists of a N-terminal domain that shares an active site structure (depicted by an in silico model) and kinetic properties (determined by steady-state and transient state kinetic analysis) with its bacterial AD counterparts, and a C-terminal domain of unknown fold and function. GlAD was found to be active over a wide pH range and to accept l-arginine, l-arginine ethyl ester, Nα-benzoyl-l-arginine, and Nω-amino-l-arginine as substrates but not agmatine, l-homoarginine, Nα-benzoyl-l-arginine ethyl ester or a variety of arginine-containing peptides. The intermediacy of a Cys424–alkylthiouronium ion covalent enzyme adduct was demonstrated and the rate constants for formation (k1 = 80 s−1) and hydrolysis (k2 = 35 s−1) of the intermediate were determined. The comparatively lower value of the steady-state rate constant (kcat = 2.6 s−1), suggests that a step following citrulline formation is rate-limiting. Inhibition of GlAD using Cys directed agents was briefly explored. S-Nitroso-l-homocysteine was shown to be an active site directed, irreversible inhibitor whereas Nω-cyano-l-arginine did not inhibit GlAD but instead proved to be an active site directed, irreversible inhibitor of the Bacillus cereus AD. 相似文献
14.
Shibata K Shirasuna K Motegi K Kera Y Abe H Yamada R 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2000,126(4):83-608
Fresh water crayfish Procambarus clarkii is known to accumulate d-alanine remarkably in muscle after seawater acclimation, accompanied by an increase in alanine racemase activity. We have purified alanine racemase from crayfish muscle to homogeneity. The enzyme is a monomeric protein with a molecular mass of 58 kDa. It is highly specific to alanine and does not racemize l-serine, l-aspartate, l-glutamate, l-valine and l-arginine. The enzyme shows the highest activity at pH 9.0 in the conversion of l- to d-alanine and at pH 8.5 in the reverse conversion. Properties such as amino acid sequence, quaternary structure, pyridoxal 5′-phosphate (PLP)-dependency, pH-dependency and kinetic parameters seem to be distinct from those of the microbial alanine racemases. Various salts including NaCl at concentrations around seawater level were potently inhibitory for the activity in both of l- to -d and d- to -l direction. 相似文献
15.
Izabela Fokt Slawomir Szymanski Stanislaw Skora Marcin Cybulski Timothy Madden Waldemar Priebe 《Carbohydrate research》2009,344(12):340
Modified d-glucose and d-mannose analogs are potentially clinically useful metabolic inhibitors. Biological evaluation of 2-deoxy-2-halo analogs has been impaired by limited availability and lack of efficient methods for their preparation. We have developed practical synthetic approaches to 2-deoxy-2-fluoro-, 2-chloro-2-deoxy-, 2-bromo-2-deoxy-, and 2-deoxy-2-iodo derivatives of d-glucose and d-mannose that exploit electrophilic addition reactions to a commercially available 3,4,6-tri-O-acetyl-d-glucal. 相似文献
16.
Melting behaviour of D-sucrose, D-glucose and D-fructose 总被引:1,自引:0,他引:1
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars. 相似文献
17.
Yoshida H Yamada M Nishitani T Takada G Izumori K Kamitori S 《Journal of molecular biology》2007,374(2):443-453
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246. 相似文献
18.
Olga N. Solovjeva German A. Kochetov 《Journal of Molecular Catalysis .B, Enzymatic》2008,54(3-4):90-92
An enzymatic method for obtaining d-xylulose 5-phosphate has been developed, based on the irreversible reaction catalyzed by transketolase: hydroxypyruvate + d-glyceraldehyde-3-phosphate → d-xylulose 5-phosphate. The preparations of sodium d-xylulose 5-phosphate, obtained using this approach, were 88% pure and contained no aldehyde admixtures. 相似文献
19.
A full-length cDNA encoding D-amino acid oxidase (DAO, EC 1.4.3.3) was cloned and sequenced from the hepatopancreas of carp fed a diet supplemented with D-alanine. This clone contained an open reading frame encoding 347 amino acid residues. The deduced amino acid sequence exhibited about 60 and 19-29% identity to mammalian and microbial DAOs, respectively. The expression of full-length carp DAO cDNA in Escherichia coli resulted in a significant level of protein with DAO activity. In carp fed the diet with D-alanine for 14 days, DAO mRNA was strongly expressed in intestine followed by hepatopancreas and kidney, but not in muscle. During D-alanine administration, DAO gene was expressed quickly in hepatopancreas with the increase of DAO activity. The inducible nature of carp DAO indicates that it plays an important physiological role in metabolizing exogenous D-alanine that is abundant in their prey invertebrates, crustaceans, and mollusks. 相似文献
20.
An original protocol of micropropagation of Aristolochia rotunda L., an important herb for the survival of an endangered butterfly was developed. The cytokinin 6-benzylaminopurine affected the production of new shoots but had no effect on shoot length. The addition of indole-3-butyric acid (IBA) had a negative effect on shoot length. Best results in terms of rooting percentage and root length were achieved with 1.5 μM IBA. The protocol can be employed to enhance the number of A. rotunda in the environment. 相似文献