首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Introduction  

Bone marrow (BM) is an immunologically privileged site where activated autoantibody-producing B cells may survive for prolonged periods. We investigated the effect of rituximab (anti-CD20 mAb) in peripheral blood (PB) and BM B-cell and T-cell populations in active rheumatoid arthritis (RA) patients.  相似文献   

2.

Background

Rheumatoid arthritis (RA) is a systemic, autoimmune disease leading to joint destruction and ultimately disability. Bone marrow (BM) is an important compartment in RA, where pathological processes from “outside the joint” can occur. IL-17 is a cytokine that exerts proinflammatory effects and participates in the process of bone destruction. It is believed that IL-17 is involved in pathogenesis of RA. However, little is known about the biology of this cytokine in BM. In the present study we investigated Th17-related cytokines in RA BM.

Methods

BM samples were obtained from RA and osteoarthritis (OA) patients during total hip replacement surgery. Levels of IL-17AF, IL-17AA, IL-17FF, IL-1β, IL-6, IL-23, TGF-β and CCL20 in BM plasma were determined by specific enzyme-linked immunosorbent assay tests. Percentage of IL-17-producing cells in BM was evaluated by flow cytometry. The effect of IL-15 stimulation on IL-17 production by BM mononuclear cells was examined in vitro.

Results

Increased levels of IL-17AF were observed in BM plasma of RA patients in comparison to OA patients. Increased concentrations of IL-1β, IL-6 and CCL20 were observed in RA compared to OA BM plasma. Concordant with these findings, significantly increased percentages of CD3+CD4+IL-17+ and CD3+CD4+IL-17+IFN-γ+ cells were present in RA BM in comparison to OA BM samples. Finally, abundant in RA BM, IL-15 increased IL-17 production by cultured BM mononuclear cells.

Conclusions

In the course of RA, the BM microenvironment can promote the development of Th17 cell responses and overproduction of IL-17AF that may lead to increased inflammation and tissue destruction in RA BM.
  相似文献   

3.

Introduction  

In the present study we evaluated changes in the B cell phenotype in peripheral blood and bone marrow (BM) of patients with rheumatoid arthritis (RA) following anti-CD20 treatment using rituximab.  相似文献   

4.

Background

Myeloid-derived suppressor cells (MDSCs) are innate immune cells capable of suppressing T-cell responses. We previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF) of mice with proteoglycan (PG)-induced arthritis (PGIA), a T cell-dependent autoimmune model of rheumatoid arthritis (RA). However, the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such cells in PGIA.

Methods

Murine bone marrow (BM) cells were cultured for 3 days in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). The phenotype of cultured cells was analyzed using flow cytometry, microscopy, and biochemical methods. The suppressor activity of BM-MDSCs was tested upon co-culture with activated T cells. To investigate the therapeutic potential of BM-MDSCs, the cells were injected into SCID mice at the early stage of adoptively transferred PGIA, and their effects on the clinical course of arthritis and PG-specific immune responses were determined.

Results

BM cells cultured in the presence of GM-CSF, IL-6, and G-CSF became enriched in MDSC-like cells that showed greater phenotypic heterogeneity than MDSCs present in SF. BM-MDSCs profoundly inhibited both antigen-specific and polyclonal T-cell proliferation primarily via production of nitric oxide. Injection of BM-MDSCs into mice with PGIA ameliorated arthritis and reduced PG-specific T-cell responses and serum antibody levels.

Conclusions

Our in vitro enrichment strategy provides a SF-like, but controlled microenvironment for converting BM myeloid precursors into MDSCs that potently suppress both T-cell responses and the progression of arthritis in a mouse model of RA. Our results also suggest that enrichment of BM in MDSCs could improve the therapeutic efficacy of BM transplantation in RA.  相似文献   

5.

Introduction  

Calprotectin (MRP8/MRP14, S100A8/A9) is associated with disease activity in patients with rheumatoid arthritis (RA). Ultrasonography (US) is a reliable method for evaluation of synovitis (B-mode (BM) and power Doppler (PD)). The present objectives were to explore in RA patients the associations between calprotectin and a comprehensive US examination, as well as the responsiveness of calprotectin compared to other inflammatory markers during anti-TNF treatment.  相似文献   

6.

Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells'' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment.

Methods

We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease.

Results

We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss.

Conclusions

Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention.  相似文献   

7.

Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment.

Methods

We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease.

Results

We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss.

Conclusions

Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention.  相似文献   

8.

Background  

Erythroid nuclear cells (ENC) of the bone marrow (BM) have not previously been considered as important producers of wide spectrum of haemo- and immunoregulatory cytokines. The aim of the current work was to confirm the production of the main hemo- and immunoregulatory cytokines in human ENC from BM.  相似文献   

9.

Background  

A hot new topic in medical treatment is the use of mesenchymal stem cells (MSC) in therapy. The low frequency of this subpopulation of stem cells in bone marrow (BM) necessitates their in vitro expansion prior to clinical use. We evaluated the effect of long term culture on the senescence of these cells.  相似文献   

10.

Introduction  

Th17 cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to systematically analyse the phenotype, cytokine profile and frequency of interleukin-17 (IL-17) producing CD4-positive T cells in mononuclear cells isolated from peripheral blood, synovial fluid and synovial tissue of RA patients with established disease, and to correlate cell frequencies with disease activity.  相似文献   

11.

Introduction  

Accumulation of B cells in the rheumatoid arthritis (RA) synovium has been reported, and it has been thought that these cells might contribute to the pathogenesis of RA by antigen presentation, autoantibody production, and/or inflammatory cytokine production. Chemokines could enhance the accumulation of B cells in the synovium. The aims of this study were to determine chemokine receptor expression by B cells both in the peripheral blood of normal donors and subjects with RA, and at the inflammatory site in RA, and the effects of chemokines on B cell activation.  相似文献   

12.

Introduction  

A proliferation-inducing ligand (APRIL) from the TNF family, owing to its role in the generation and survival of plasma cells (PCs), is currently targeted for rheumatoid arthritis (RA) treatment. However, little is known about APRIL expression in RA lesions, hampering our understanding of the way APRIL may modulate this autoimmune disease.  相似文献   

13.

Introduction  

The aim of this study was to quantify the number of T-helper (TH)-17 cells present in rheumatoid arthritis (RA) synovial fluid (SF) and to determine the level of interleukin (IL)-17 cytokine in RA, osteoarthritis (OA) and normal synovial tissue, as well as to examine SF macrophages for the presence of IL-23, IL-27 and interferon (IFN)-γ.  相似文献   

14.

Introduction  

Co-stimulatory signal B7(CD80/CD86):CD28 is needed in order to activate T cells in immune response. Cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4-Ig) binding to the B7 molecules on antigen-presenting cells downregulates this activation and represents a recent biological treatment in rheumatoid arthritis (RA). Objectives of the study were to investigate the presence of the B7.2 (CD86) molecule and its masking by CTLA4-Ig on cultures of both RA synovial macrophages (RA SM), and of macrophages differentiated from THP-1 cells (M). In addition, the anti-inflammatory effects of CTLA4-Ig on co-cultures of RA SM and M with activated T cells were tested.  相似文献   

15.

Introduction  

Angiogenesis and vasculogenesis are critical in rheumatoid arthritis (RA) as they could be a key issue for chronic synovitis. Contradictory results have been published regarding circulating endothelial progenitor cells (EPCs) in RA. We herein investigated late outgrowth EPC sub-population using recent recommendations in patients with RA and healthy controls.  相似文献   

16.

Introduction  

Rheumatoid arthritis (RA) is considered a T cell driven autoimmune disease, therefore, the ability of B cell depleting biologics, e.g., anti-CD20 antibodies, to alleviate RA is unclear. This study examined the proportions of IL-17-secreting lymphocytes in the blood of healthy subjects and RA patients and determined if Th17 cells belong to a CD20+ subset of T cells.  相似文献   

17.

Introduction  

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoreactive T and B cells, which are believed to be secondary to deficient dendritic cells (DCs). However, whether DC abnormalities occur during their development in the bone marrow (BM) or in the periphery is not known.  相似文献   

18.

Introduction  

Inflammatory joint destruction in rheumatoid arthritis (RA) may be triggered by autoantibodies, the production of which is supported by autoreactive T cells. Studies on RA and animal models of the disease suggest that T cells recruited in the joints can locally initiate or propagate arthritis. Herein, we investigated the role of joint-homing versus lymphoid organ-homing T cells in the development of proteoglycan-induced arthritis (PGIA), an autoimmune model of RA.  相似文献   

19.

Introduction  

The objective of this study was to investigate the effects of tumor necrosis factor (TNF)-α inhibitors on circulating T helper-type 17 (Th17) cells and Th17-related cytokines in patients with rheumatoid arthritis (RA).  相似文献   

20.

Background  

All-trans retinoic acid (RA) is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs), we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号