首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ bioremediation of monoaromatic pollutants in groundwater: a review   总被引:3,自引:0,他引:3  
Monoaromatic pollutants such as benzene, toluene, ethylbenzene and mixture of xylenes are now considered as widespread contaminants of groundwater. In situ bioremediation under natural attenuation or enhanced remediation has been successfully used for removal of organic pollutants, including monoaromatic compounds, from groundwater. Results published indicate that in some sites, intrinsic bioremediation can reduce the monoaromatic compounds content of contaminated water to reach standard levels of potable water. However, engineering bioremediation is faster and more efficient. Also, studies have shown that enhanced anaerobic bioremediation can be applied for many BTEX contaminated groundwaters, as it is simple, applicable and economical.

This paper reviews microbiology and metabolism of monoaromatic biodegradation and in situ bioremediation for BTEX removal from groundwater under aerobic and anaerobic conditions. It also discusses the factors affecting and limiting bioremediation processes and interactions between monoaromatic pollutants and other compounds during the remediation processes.  相似文献   


2.
Biofilm forming microbes have complex effects on the flow properties of natural porous media. Subsurface biofilms have the potential for the formation of biobarriers to inhibit contaminant migration in groundwater. Another example of beneficial microbial effects is the biotransformation of organic contaminants to less harmful forms, thereby providing an in situ method for treatment of contaminated groundwater supplies. Mathematical models that describe contaminant transport with biodegradation involve a set of coupled convection-dispersion equations with non-linear reactions. The reactive solute transport equation is one for which numerical solution procedures continue to exhibit significant limitations for certain problems of groundwater hydrology interest. Accurate numerical simulations are crucial to the development of contaminant remediation strategies. A new numerical method is developed for simulation of reactive bacterial transport in porous media. The non-standard numerical approach is based on the ideas of the ‘exact’ time-stepping scheme. It leads to solutions free from the numerical instabilities that arise from incorrect modeling of derivatives and reaction terms. Applications to different biofilm models are examined and numerical results are presented to demonstrate the performance of the proposed new method.  相似文献   

3.
ABSTRACT An 8-year bioremediation field study was conducted in a trichloroethene (TCE)-contaminated, highly indurated (i.e., hard), recharge-limited (i.e., contains little water) conglomerate where common remediation strategies, such as groundwater recirculation and direct push installation of a large well network, could not be used. A tracer test using isotopically distinct water from the Hetch Hetchy Reservoir indicated that remediation fluids mainly flowed through fractures and sand lenses in the conglomerate. This was confirmed during in situ bioremediation of the site, in which Dehalococcoides (from a bioaugmentation culture) and volatile fatty acids (from injection of lactate) were the most accurate indicators of transport between wells. Some contaminants were also displaced out of the area due to injection of tracer water. Despite these difficulties, dissolved contaminant mass decreased by an estimated 80% by the end of the test, reaching the lowest values ever recorded at this site. Furthermore, the persistence of ethene 4 years after bioaugmentation suggests that the dechlorinating capacity of the remaining microbial community is comparable to the matrix diffusion of TCE into the dissolved phase.  相似文献   

4.
Intrinsic bioremediation in a solvent-contaminated alluvial groundwater   总被引:1,自引:0,他引:1  
An industrial site contaminated with a mixture of volatile organic compounds in its subsurface differed from previously reported locations in that the contamination consisted of a mixture of chlorinated, brominated, and non-halogenated aromatic and aliphatic solvents in an alluvial aquifer. The source area was adjacent to a river. Of the contaminants present in the aquifer, benzene, toluene, and chlorobenzene (BTC) were of primary concern. Studies of the physical, chemical, and microbiological characteristics of site groundwater were conducted. The studies concentrated on BTC, but also addressed the fate of the other aquifer VOCs. Gas chromatographic analyses performed on laboratory microcosms demonstrated that subsurface microorganisms were capable of BTC degradation. Mineralization of BTC was demonstrated by the release of 14CO2 from radiolabelled BTC. In the field, distribution patterns of nutrients and electron acceptors were consistent with expression of in situ microbial metabolic activity: methane, conductivity, salinity and o-phosphate concentrations were all positively correlated with contaminant concentration; while oxidation-reduction potential, nitrate, dissolved oxygen and sulfate concentrations were negatively correlated. Total aerobes, aerotolerant anaerobes, BTC-specific degraders, and acridine orange direct microscopic microorganism counts were strongly and positively correlated with field contaminant concentrations. The relative concentrations of benzene and toluene were lower away from the core of the plume compared to the less readily metabolized compound, chlorobenzene. Hydrodynamic modeling of electron-acceptor depletion conservatively estimated that 450 kg of contaminant have been removed from the subsurface yearly. Models lacking a biodegradation term predicted that 360 kg of contaminant would reach the river annually, which would result in measurable contaminant concentrations. River surveillance, however, has only rarely detected these compounds in the sediment and then only at trace concentrations. Thus, the combination of field modeling, laboratory studies, and site surveillance data confirm that significant in situ biodegradation of the contaminants has occurred. These studies establish the presence of intrinsic bioremediation of groundwater contaminants in this unusual industrial site subsurface habitat. Received 01 December 1995/ Accepted in revised form 27 July 1996  相似文献   

5.
Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.  相似文献   

6.
Chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE) are common groundwater contaminants. One approach that has been used to manage these contaminants is in situ bioremediation, where an electron donor is added to contaminated groundwater to stimulate indigenous bacteria to degrade the chlorinated compounds. A technique that is increasingly being used to supply electron donor to the subsurface involves application of a commercial product with the trade name Hydrogen Release Compound (HRC). HRC is a viscous fluid that releases lactic acid, which subsequently is metabolized to provide molecular hydrogen as an electron donor. This study investigates application of HRC to remediate a site contaminated with TCE. A user-defined dual-Monod biodegradation reaction module was developed for the RT3D-reactive transport code to simulate in situ biodegradation of TCE by reductive dehalogenation stimulated by release of molecular hydrogen in the subsurface as a result of HRC injection. The model was used to show how a remediation system using HRC to stimulate reductive dehalogenation could be designed, and how mixing, as quantified by hydraulic conductivity and dispersivity, impacts the system design.  相似文献   

7.
陈杏娟  郭俊  许玫英 《微生物学报》2011,51(9):1146-1151
零价铁(Fe0)具有高效还原转化多种污染物的能力,但不能实现污染物的矿化作用。微生物与Fe0的协同作用过程,以微生物为主导,Fe0起促进作用,可有效提高多种污染物的降解效率,实现污染物的彻底脱毒与无害化,因此利用微生物协同Fe0氧化进行环境修复具有广阔的应用前景。本文从微生物协同Fe0氧化的作用机理、菌种多样性及其在环境修复中的应用等研究进展进行综述,提出微生物协同Fe0氧化的环境修复研究中存在的主要问题和重点研究方向,以期在更全面、深入地认识这一过程的基础上,充分发挥其在环境修复中的作用。  相似文献   

8.
The remediation of uranium from soils and groundwater at Department of Energy (DOE) sites across the United States represents a major environmental issue, and bioremediation has exhibited great potential as a strategy to immobilize U in the subsurface. The bioreduction of U(VI) to insoluble U(IV) uraninite has been proposed to be an effective bioremediation process in anaerobic conditions. However, high concentrations of nitrate and low pH found in some contaminated areas have been shown to limit the efficiency of microbial reduction of uranium. In the present study, nonreductive uranium biomineralization promoted by microbial phosphatase activity was investigated in anaerobic conditions in the presence of high nitrate and low pH as an alternative approach to the bioreduction of U(VI). A facultative anaerobe, Rahnella sp. Y9602, isolated from soils at DOE's Oak Ridge Field Research Center (ORFRC), was able to respire anaerobically on nitrate as a terminal electron acceptor in the presence of glycerol-3-phosphate (G3P) as the sole carbon and phosphorus source and hydrolyzed sufficient phosphate to precipitate 95% total uranium after 120 hours in synthetic groundwater at pH 5.5. Synchrotron X-ray diffraction and X-ray absorption spectroscopy identified the mineral formed as chernikovite, a U(VI) autunite-type mineral. The results of this study suggest that in contaminated subsurfaces, such as at the ORFRC, where high concentrations of nitrate and low pH may limit uranium bioreduction, the biomineralization of U(VI) phosphate minerals may be a more attractive approach for in situ remediation providing that a source of organophosphate is supplied for bioremediation.  相似文献   

9.
Much of the past and current focus of bioremediation has been on laboratory studies of microbial processes. By necessity, early studies have ignored important field properties, parameters, and processes that control the ultimate success of in situ bioremediation of contaminated groundwater. This paper presents a bioengineering systems approach that examines the impact of some of these field variables on common bioremediation practices. Using simple systems, the niche of biostimulation is shown to be aquifers with high contaminant sorption. A novel gas-phase biostimulation filter and a novel resting-state bioaugmentation/biofilter approach which show promise for effective field implementation are discussed. Received 08 December 1995/ Accepted in revised form 30 July 1996  相似文献   

10.
The costs of environmental remediation at leaking petroleum underground storage tank (UST) sites are influenced significantly by soil cleanup levels. The use of conservative generic soil cleanup levels may be inappropriate at some sites contaminated by leaking petroleum USTs. At many contaminated sites, a primary objective of site remediation is long‐term protection of water resources (e.g., groundwater) from pollution. Leaching of pollutants from residual soil contamination to groundwater is a primary consideration in establishing site‐specific soil cleanup levels at fuel‐contaminated sites. The use of laboratory soil leachability testing methods may be useful in objectively evaluating the leaching potential of contaminants from residual soil contamination and estimating potential groundwater impacts. Developing soil cleanup levels that are protective of water resources must include a technically sound integration of site‐specific soil leachability data and contaminant attenuation factors. Evaluation of the leaching potentials of soil contaminants may also provide essential supplementary information for other site characterization methods that may be used to evaluate risks to human health. Contaminant leachability testing of soils may provide a cost‐effective and technically based method for determining soil cleanup levels that are protective of groundwater resources at contaminated petroleum UST sites.  相似文献   

11.
生物修复作为经济有效、绿色可持续的修复技术,在有机污染土壤和地下水修复上具有广阔的应用前景。基于WebofScience核心数据库,通过文献计量可视化应用软件VOSviewer和CiteSpace,分析了1990–2020年有机污染土壤和地下水生物修复领域的研究热点及趋势。结果表明,有机污染土壤和地下水生物修复领域的论文发表数量呈增长趋势,发文总量最多的国家是美国和中国,但是2012年后中国年发文量快速增加,并位居第一。该领域的相关研究主要发表在Chemosphere、Environmental ScienceTechnology、Science of the Total Environment等top期刊上。全球研究机构中中国科学院发文量最多,但是来自美国加州大学的总被引频次和h-index最高。发文量最多的是来自英国兰卡斯特大学的学者Semple教授,我国发文量最多的是来自中国科学院南京土壤研究所的骆永明研究员。下一步研究重点和热点:针对复合污染土壤和地下水,研发新型耦合强化生物修复技术,采用先进的分子生物学方法探索功能微生物及其功能基因,阐明生物降解机理,明确原位污染土壤和地下水的靶向性调控机制。  相似文献   

12.
海洋石油污染物的微生物降解与生物修复   总被引:28,自引:0,他引:28  
石油是海洋环境的主要污染物 ,已经对海洋及近岸环境造成了严重的危害。微生物降解是海洋石油污染去除的主要途径。海洋石油污染物的微生物降解受石油组分与理化性质、环境条件以及微生物群落组成等多方面因素的制约 ,N和P营养的缺乏是海洋石油污染物生物降解的主要限制因子。在生物降解研究基础上发展起来的生物修复技术在海洋石油污染治理中发展潜力巨大 ,并且取得了一系列成果。介绍了海洋中石油污染物的来源、转化过程、降解机理、影响生物降解因素及生物修复技术等方面内容 ,强调了生物修复技术在治理海洋石油污染环境中的优势和重要性 ,指出目前生物修复技术存在的问题。  相似文献   

13.
地下水微生物功能群及生物地球化学循环   总被引:1,自引:0,他引:1       下载免费PDF全文
李平  谭添  刘韩  王和林 《微生物学报》2021,61(6):1598-1609
地下水系统是地球关键带的重要组成部分,为微生物提供了特殊的栖息环境和复杂的生存条件,进而演化出复杂的生物地球化学过程。随着多技术、多学科的交叉融合及发展,近几十年地下水微生物功能群及生物地球化学循环研究取得了引人瞩目的重要进展。本文从地下水中的微生物群功能分区、微生物介导的地球化学元素循环、污染与修复中的生物地球化学过程,以及生物地球化学过程数值模拟等方面对国内外相关研究进展进行了综述,并对地下水系统中微生物"暗物质、暗过程"、微生物修复、地下水医学地质学,以及地下水多学科交叉融合等研究方向和前景进行了展望。  相似文献   

14.
A variety of remediation technologies are available to address hydrocarbon contamination, including free product recovery, soil venting, air sparging, groundwater recovery and treatment, and in situ bioremediation. These technologies address hydrocarbon contamination distributed between free, adsorbed, and dissolved phases in both the vadose and saturated zones. Selection of appropriate technologies is dependent on a number of factors, including contaminants, site‐specific characteristics, clean‐up goals, technology feasibility, cost, and regulatory and time requirements. This article describes a decision framework for selecting appropriate remediation technologies at hydrocarbon‐contaminated sites in a structured and tiered manner. Decision modules include (1) site characterization and product recovery; (2) vadosezone treatment: soil venting, bioremediation, and excavation; (3) saturated zone treatment: sparging, bioremediation, groundwater recovery, and excavation; and (4) groundwater treatment: carbon, air stripping, advanced oxidation, and bioreactors. Selection criteria for treatment technologies that address vadose‐ and saturated‐zone soils, as well as recovered groundwater, are described. The decision framework provides a systematic process to formulate solutions to complex problems and documents the rationale for selecting remediation systems designed to achieve closure at hydrocarbon‐contaminated sites.  相似文献   

15.
This study presents a method for identifying cost effective sampling designs for long-term monitoring of remediation of groundwater over multiple monitoring periods under uncertain flow conditions. A contaminant transport model is used to simulate plume migration under many equally likely stochastic hydraulic conductivity fields and provides representative samples of contaminant concentrations. Monitoring costs are minimized under a constraint to meet an acceptable level of error in the estimation of total mass for multiple contaminants simultaneously over many equiprobable realizations of hydraulic conductivity field. A new myopic heuristic algorithm (MS-ER) that combines a new error-reducing search neighborhood is developed to solve the optimization problem. A simulated annealing algorithm using the error-reducing neighborhood (SA-ER) and a genetic algorithm (GA) are also considered for solving the optimization problem. The method is applied to a hypothetical aquifer where enhanced anaerobic bioremediation of four toxic chlorinated ethene species is modeled using a complex contaminant transport model. The MS-ER algorithm consistently performed better in multiple trials of each algorithm when compared to SA-ER and GA. The best design of MS-ER algorithm produced a savings of nearly 25% in project cost over a conservative sampling plan that uses all possible locations and samples.  相似文献   

16.
This study presents a method for identifying cost effective sampling designs for long-term monitoring of remediation of groundwater over multiple monitoring periods under uncertain flow conditions. A contaminant transport model is used to simulate plume migration under many equally likely stochastic hydraulic conductivity fields and provides representative samples of contaminant concentrations. Monitoring costs are minimized under a constraint to meet an acceptable level of error in the estimation of total mass for multiple contaminants simultaneously over many equiprobable realizations of hydraulic conductivity field. A new myopic heuristic algorithm (MS-ER) that combines a new error-reducing search neighborhood is developed to solve the optimization problem. A simulated annealing algorithm using the error-reducing neighborhood (SA-ER) and a genetic algorithm (GA) are also considered for solving the optimization problem. The method is applied to a hypothetical aquifer where enhanced anaerobic bioremediation of four toxic chlorinated ethene species is modeled using a complex contaminant transport model. The MS-ER algorithm consistently performed better in multiple trials of each algorithm when compared to SA-ER and GA. The best design of MS-ER algorithm produced a savings of nearly 25% in project cost over a conservative sampling plan that uses all possible locations and samples.  相似文献   

17.
植物根系分泌物对土壤污染修复的作用及影响机理   总被引:4,自引:0,他引:4  
王亚  冯发运  葛静  李勇  余向阳 《生态学报》2022,42(3):829-842
生物修复是一种经济环保的土壤修复技术。根系分泌物是利用生物修复污染土壤过程中的关键物质,也是植物与土壤微生物进行物质交换和信息传递的重要载体,在植物响应污染物胁迫中扮演重要角色。研究植物根系分泌物对土壤污染修复的作用和影响机理,是深入理解植物和微生物环境适应机制的重要途径,对促进生物修复污染土壤有重要指导意义。从污染物胁迫对根系分泌物的影响、根系分泌物对土壤污染物环境行为的影响、根系分泌物在调控污染土壤中根际微生物群落结构和多样性中发挥的作用等几个方面综述了根系分泌物对土壤污染修复的影响及内在机制。研究结果表明,根系分泌物在降低重金属对植物的毒性、加速有机污染物降解等方面有非常重要的作用。根系分泌物对土壤微生物的丰度和多样性均有显著影响,其与根际微生物互作在土壤污染物的消减中发挥了重要的调控作用。在此基础上,提出了以往研究中的不足,并对污染物胁迫下根系分泌物未来研究的方向和趋势进行了展望。  相似文献   

18.
A comprehensive overview of elements in bioremediation   总被引:3,自引:0,他引:3  
Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation is an increasingly popular alternative to conventional methods for treating waste compounds and media with the possibility to degrade contaminants using natural microbial activity mediated by different consortia of microbial strains. Many studies about bioremediation have been reported and the scientific literature has revealed the progressive emergence of various bioremediation techniques. In this review, we discuss the various in situ and ex situ bioremediation techniques and elaborate on the anaerobic digestion technology, phytoremediation, hyperaccumulation, composting and biosorption for their effectiveness in the biotreatment, stabilization and eventually overall remediation of contaminated strata and environments. The review ends with a note on the recent advances genetic engineering and nanotechnology have had in improving bioremediation. Case studies have also been extensively revisited to support the discussions on biosorption of heavy metals, gene probes used in molecular diagnostics, bioremediation studies of contaminants in vadose soils, bioremediation of oil contaminated soils, bioremediation of contaminants from mining sites, air sparging, slurry phase bioremediation, phytoremediation studies for pollutants and heavy metal hyperaccumulators, and vermicomposting.  相似文献   

19.
Natural attenuation: what does the subsurface have in store?   总被引:7,自引:0,他引:7  
Throughout the world, organic and inorganic substances leach intothe subsurface as a result of human activities and accidents. There, the chemicals pose director indirect threats to the environment and to increasingly scarce drinking water resources.At many contaminated sites the subsurface is able to attenuate pollutants which, potentially,lowers the costs of remediation. Natural attenuation comprises a wide range of processesof which the microbiological component, which is responsible for intrinsic bioremediation,can decrease the mass and toxicity of the contaminants and is, therefore, the mostimportant. Reliance on intrinsic bioremediation requires methods to monitor the process. Thesubject of this review is how knowledge of subsurface geology and hydrology, microbial ecologyand degradation processes is used and can be used to monitor the potential andcapacity for intrinsic bioremediation in the subsurface and to verify degradation in situ.As research on natural attenuation in the subsurface has been rather fragmented and limitedand often allows only conclusions to be drawn of the site under investigation, we providea concept based on Environmental Specimen Banking which will contribute to furtherunderstanding subsurface natural attenuation processes and will help to develop andimplement new monitoring techniques.  相似文献   

20.
Explosives are subject to several attenuation processes that potentially reduce concentrations in groundwater over time. Some of these processes are well defined, while others are poorly understood. The objective of the project was to optimize data collection and processing procedures for evaluation and implementation of monitored natural attenuation of explosives. After conducting experiments to optimize data quality, a protocol was established for quarterly monitoring of thirty wells over a 2-year period at a former waste disposal site. Microbial biomarkers and stable isotopes of nitrogen and carbon were explored as additional approaches to tracking attenuation processes. The project included a cone penetrometry sampling event to characterize site lithology and to obtain sample material for biomarker studies. A three-dimensional groundwater model was applied to conceptualize and predict future behavior of the contaminant plume. The groundwater monitoring data demonstrated declining concentrations of explosives over the 2 years. Biomarker data showed the potential for microbial degradation and provided an estimate of the degradation rate. Measuring stable isotopic fractions of nitrogen in TNT was a promising method of monitoring TNT attenuation. Overall, results of the demonstration suggest that monitored natural attenuation is a viable option that should be among the options considered for remediation of explosives-contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号