首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Several matrix-attachment regions (MARs) from animals have been shown to block interactions between an enhancer and promoter when situated between the two. Since a similar function for plant MARs has not been discerned, we tested the Zea mays ADH1 5′ MAR, Nicotiana tabacum Rb7 3′ MAR and a transformation booster sequence (TBS) MAR from Petunia hybrida for their ability to impede enhancer–promoter interactions in Arabidopsis thaliana. Stable transgenic lines containing vectors in which one of the three MAR elements or a 4 kb control sequence were interposed between the cauliflower mosaic virus 35S enhancer and a flower-specific AGAMOUS second intron-derived promoter (AGIP)::β-glucuronidase (GUS) fusion were assayed for GUS expression in vegetative tissues. We demonstrate that the TBS MAR element, but not the ADH1 or Rb7 MARs, is able to block interactions between the 35S enhancer and AGIP without compromising the function of either with elements from which they are not insulated. Accession numbers: TBS from Petunia hybrida cultivar V26, GenBank accession number EU864306.  相似文献   

4.
5.
6.
7.
8.
9.
Molecular stacking enables multiple traits to be effectively engineered in crops using a single vector. However, the co‐existence of distinct plant promoters in the same transgenic unit might, like their mammalian counterparts, interfere with one another. In this study, we devised a novel approach to investigate enhancer–promoter and promoter–promoter interactions in transgenic plants and demonstrated that three of four flower‐specific enhancer/promoters were capable of distantly activating a pollen‐ and stigma‐specific Pps promoter (fused to the cytotoxic DT‐A gene) in other tissues, as revealed by novel tissue ablation phenotypes in transgenic plants. The NtAGI1 enhancer exclusively activated stamen‐ and carpel‐specific DT‐A expression, thus resulting in tissue ablation in an orientation‐independent manner; this activation was completely abolished by the insertion of an enhancer‐blocking insulator (EXOB) between the NtAGI1 enhancer and Pps promoter. Similarly, AGL8 and AP1Lb1, but not AP1La, promoters also activated distinct tissue‐specific DT‐A expression and ablation, with the former causing global growth retardation and the latter ablating apical inflorescences. While the tissue specificity of the enhancer/promoters generally defined their activation specificities, the strength of their activity in particular tissues or developmental stages appeared to determine whether activation actually occurred. Our findings provide the first evidence that plant‐derived enhancer/promoters can distantly interact/interfere with one another, which could pose potential problems for the tissue‐specific engineering of multiple traits using a single‐vector stacking approach. Therefore, our work highlights the importance of adopting enhancer‐blocking insulators in transformation vectors to minimize promoter–promoter interactions. The practical and fundamental significance of these findings will be discussed.  相似文献   

10.
11.
Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes. Here, we show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of the adjacent gene, TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. When Homie is deleted in the context of a large transgene that mimics both eve and TER94 regulation, TER94 is repressed. This repression depends on the eve PRE. Ubiquitous TER94 expression is “replaced” by expression in an eve pattern when Homie is deleted, and this effect is reversed when the PRE is also removed. Repression of TER94 is attributable to spreading of the eve Pc domain into the TER94 locus, accompanied by an increase in histone H3 trimethylation at lysine 27. Other PREs can functionally replace the eve PRE, and other insulators can block PRE-dependent repression in this context. The full activity of the eve promoter is also dependent on Homie, and other insulators can promote normal eve enhancer-promoter communication. Our data suggest that this is not due to preventing promoter competition, but is likely the result of the insulator organizing a chromosomal conformation favorable to normal enhancer-promoter interactions. Thus, insulator activities in a native context include enhancer blocking and enhancer-promoter facilitation, as well as preventing the spread of repressive chromatin.  相似文献   

12.
Suo G  Chen B  Zhang J  Duan Z  He Z  Yao W  Yue C  Dai J 《Plant cell reports》2006,25(7):689-697
Bone morphogenetic protein 2 (BMP2) has great potential in therapeutic applications. We are working on generating transgenic plants as a bioreactor to produce BMP2. We have studied the effects of codon optimization on the expression of human BMP2 (hBMP2) in tobacco plants. Three modified hBMP2 genes were transformed into tobacco under the control of either cauliflower mosaic virus 35S (CaMV35S) promoter or double-CaMV35S promoter plus alfalfa mosaic virus (AMV) enhancer. The fused β-glucuronidase (GUS) reporter gene was used to facilitate the assay of protein expression. The results indicated that codon optimization could increase the protein expression level obviously under CaMV35S promoter. However, under relatively stronger initiation condition (double-CaMV35S promoter plus AMV enhancer), only the gene with the lowest degree of codon optimization could increase the protein expression level. Our findings suggest that the action of codon optimization may be influenced by the factors of promoter strength and A+T content in tobacco plants.  相似文献   

13.
Flower-specific promoters can enable transgenic enhancement of valuable ornamental traits, including flower shape and color. However, the identification of strong, tissue-specific promoters remains a limiting factor. To obtain enhanced flower-specific promoters, we constructed four chimeric promoters (p35S-PCHS-Ω, p35S-LCHS-Ω, pOCS-PCHS-Ω and pOCS-LCHS-Ω) combining the 35S or OCS enhancer fused to a 302 bp CHSA core promoter fragment from petunia (PCHS) or a 307 bp CHS core promoter fragment from lily (LCHS), and also containing an omega element (Ω). Each promoter was fused to the β-glucuronidase (GUS) reporter gene, and we examined the levels and tissue specificity of GUS expression in transgenic Torenia fournieri. p35S-PCHS-Ω and p35S-LCHS-Ω drove strong, constitutive GUS expression in all tissues, especially in colored corollas (p35S-PCHS-Ω) or in colored corollas and roots (p35S-LCHS-Ω). pOCS-PCHS-Ω drove stronger GUS expression in colored corollas than in other tissues but expression was weaker than that of p35S-PCHS-Ω. pOCS-LCHS-Ω drove GUS in colored corollas but also in roots. Among the four chimeric promoters, pOCS-PCHS-Ω exhibited stronger activity only in colored corollas, making it useful for transgenic enhancement of floral traits, such as expressing ‘blue genes’ in lily to produce new lines with blue flowers.  相似文献   

14.
Insulator elements can be classified as enhancer-blocking or barrier insulators depending on whether they interfere with enhancer-promoter interactions or act as barriers against the spreading of heterochromatin. The former class may exert its function at least in part by attaching the chromatin fiber to a nuclear substrate such as the nuclear matrix, resulting in the formation of chromatin loops. The latter class functions by recruiting histone-modifying enzymes, although some barrier insulators have also been shown to create chromatin loops. These loops may correspond to functional nuclear domains containing clusters of co-expressed genes. Thus, insulators may determine specific patterns of nuclear organization that are important in establishing specific programs of gene expression during cell differentiation and development.  相似文献   

15.
Insulators can block an enhancer of one gene from activating a promoter on another nearby gene. Almost all described vertebrate insulators require binding of the regulatory protein CTCF for their activity. We show that CTCF copurifies with the nucleolar protein nucleophosmin and both are present at insulator sites in vivo. Furthermore, exogenous insulator sequences are tethered to the nucleolus in a CTCF-dependent manner. These interactions, quite different from those of the gypsy insulator element in Drosophila, may generate similar loop structures, suggesting a common theme and model for enhancer-blocking insulator action.  相似文献   

16.
17.
The genetic transformation of plants has become a necessary tool for fundamental plant biology research, as well as the generation of engineered plants exhibiting improved agronomic and industrial traits. However, this technology is significantly hindered by the fact that transgene expression is often highly variable amongst independent transgenic lines. Two of the major contributing factors to this type of inconsistency are inappropriate enhancer-promoter interactions and chromosomal position effects, which frequently result in mis-expression or silencing of the transgene, respectively. Since the precise, often tissue-specific, expression of the transgene(s) of interest is often a necessity for the successful generation of transgenic plants, these undesirable side effects have the potential to pose a major challenge for the genetic engineering of these organisms. In this review, we discuss strategies for improving foreign gene expression in plants via the inclusion of enhancer-blocking insulators, which function to impede enhancer-promoter communication, and barrier insulators, which block the spread of heterochromatin, in transgenic constructs. While a complete understanding of these elements remains elusive, recent studies regarding their use in genetically engineered plants indicate that they hold great promise for the improvement of transgene expression, and thus the future of plant biotechnology.  相似文献   

18.
J Vazquez  P Schedl 《The EMBO journal》1994,13(24):5984-5993
The Drosophila 87A7 heat shock locus is bordered, on the proximal and distal sides, by two special chromatin structures, scs and scs'. Each structure is characterized by two sets of nuclease-hypersensitive sites, located within moderately G/C-rich DNA, flanking an A/T-rich nuclease-resistant region. scs and scs' have been shown to insulate a white reporter gene from position effects and to prevent enhancer-promoter interactions. These and other properties suggest scs and scs' might function as chromatin domain boundaries. To identify the DNA sequences which are essential for the insulating activity of scs we used an enhancer blocking assay based on the white gene. Sequences capable of suppressing activation of white by its upstream enhancer elements reside within a 900 bp DNA fragment corresponding to the scs chromatin structure. Within this region, DNA fragments associated with the two nuclease-hypersensitive regions are essential for full enhancer blocking activity, while the central A/T-rich region is dispensable. Deletions which remove part of the hypersensitive regions result in intermediate levels of white activity. Insulating activity can, however, be reconstituted by multimerizing DNA fragments from either hypersensitive region. Our results suggest that the scs boundary is assembled from a discrete number of functionally redundant DNA sequences located within both hypersensitive regions and that boundaries act by decreasing the frequency of enhancer-promoter interactions. We also show that certain types of position effects, like those involved in dosage compensation, are not efficiently blocked by scs.  相似文献   

19.
The chromatin insulator cHS4 can reduce silencing chromosomal position effects and genotoxicity associated with integrating viral vectors. However, the fully active version of this element can also reduce vector titers and is only partially effective. In order to identify alternatives to cHS4, we developed a functional lentiviral vector-based reporter screen for enhancer-blocking insulators. Using this system, we screened candidate sequences that were initially identified by chromatin profiling for binding by CTCF and for DNase hypersensitivity. All 12 analyzed candidates blocked enhancer-promoter activity. The enhancer-blocking activity of the top two candidates was confirmed in two complementary plasmid-based assays. Studies in a gammaretroviral reporter vector indicated these two candidates have little to no effect on vector titers, and do not diminish vector expression in primary mouse bone marrow cultures. Subsequent assessment in a mouse in vivo tumor formation model demonstrated that both candidates reduced the rate of gammaretroviral vector-mediated genotoxicity as effectively as the cHS4 insulator. In summary, we have developed a novel lentiviral vector-based method of screening candidate elements for insulator activity, and have used this method to identify two new insulator elements capable of improving the safety of retroviral vectors without diminishing vector titers or expression. These findings expand the limited arsenal of insulators functionally validated to reduce the rate of retroviral vector-mediated genotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号