首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Effects of heavy ions and energetic protons on normal human fibroblasts   总被引:2,自引:0,他引:2  
At the low particle fluences of radiation to which astronauts are exposed in space, "non-targeted" effects such as the bystander response may have increased significance. The radiation-induced bystander effect is the occurrence of biological responses in unirradiated cells near to or sharing medium with cells traversed by radiation. The objectives of this study were to establish the responses of AG01522 diploid human fibroblasts after exposure to several heavy ions and energetic protons, as compared to X-rays, and to obtain initial information on the bystander effect in terms of cell clonogenic survival after Fe ion irradiation. Using a clonogenic survival assay, relative biological effectiveness (RBE) values at 10% survival were 2.5, 2.3, 1.0 and 1.2 for 1 GeV/amu Fe, 1 GeV/amu Ti, 290 MeV/amu C and 1 GeV/amu protons, respectively, compared to 250 kVp X-rays. For induction of micronuclei (MN), compared to the low LET protons, Fe and Ti are very effective inducers of damage, although C ions are similar to protons. Using a transwell insert system in which irradiated and unirradiated bystander cells share medium but are not touching each other, it was found that clonogenic survival in unirradiated bystander cells was decreased when irradiated cells were exposed to Fe ions or X-rays. The magnitude of the decrease in bystander survival was similar with both radiation types, reaching a plateau of about 80% survival at doses of about 0.5 Gy or larger.  相似文献   

2.
BackgroundAim of this study was to evaluate the relative biological effectiveness (RBE) of carbon (12C) and oxygen ion (16O)-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT) based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation.MethodsFour human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ionsingle doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O). SOBP-penetration depth and extension was 35 mm +/−4 mm and 36 mm +/−5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET) were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and realtive biological effectiveness (RBE) values were defined.ResultsFor all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1–3.3 and 1.9–3.1 for 12C and 16O, respectively.ConclusionBoth irradiation with 12C and 16O using the rasterscanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O.  相似文献   

3.
We examined the effects of radiation on decreases in osteoclast numbers after regional irradiation of rats with carbon ions and gamma rays. Male Wistar rats were subjected to hind-leg irradiation with carbon ions (290 MeV/u) or gamma rays at doses of 15, 22.5, or 30 Gy. The effects of carbon ions and gamma rays on osteoclasts were studied using histologic and morphometric methods. At doses of 15 Gy and 22.5 Gy, osteoclast numbers increased transiently until day 5 after irradiation and then decreased rapidly in both the carbon ion and gamma ray irradiation groups. The carbon ion group showed reduced osteoclast size compared with the gamma ray group. Carbon ion irradiation had a more marked effect on osteoclast activity, and suppressed maturation to a greater extent than gamma irradiation. These observations suggest that carbon ion irradiation induces differential modulation of osteoclast growth factor expression.  相似文献   

4.
Survival of colony-forming units-spleen (CFU-S) was measured after single doses of photons or heavy charged particles from the BEVALAC. The purposes were to define the radiosensitivity to heavy ions used medically and to evaluate relationships between relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LET infinity). In in vitro irradiation experiments. CFU-S suspensions were exposed to 220 kVp X rays or to 20Ne (372 MeV/micron) or 40Ar (447 MeV/micron) particles in the plateau portion of the Bragg curve. In in vivo irradiation experiments, donor mice from which CFU-S were harvested were exposed to 12C (400 MeV/micron). 20Ne (400 or 670 MeV/micron), or 40Ar (570 MeV/micron) particles in Bragg peaks spread to 4 or 10 cm by spiral ridge filters. Based on RBE at 10 survival, the maximum RBE of 2.1 was observed for 40Ar particles characterized by an LET infinity of approximately 100 keV/micron. Lower RBEs were determined at lower or higher estimated values of LET infinity and ranged from 1.1 for low energy 40Ar particles to 1.5-1.6 for low energy 12C and 20Ne. The responses of CFU-S are compared with responses of other model systems to heavy charged particles and with the reported sensitivity of CFU-S to neutrons of various energies. The maximum RBE reported here, 2.1 for high energy 40Ar particles, is somewhat lower than values reported for fission-spectrum neutrons, and is appreciably lower than values for monoenergetic 0.43-1.8 MeV neutrons. Low energy 12C and 20Ne particles have RBEs in the range of values reported for 14.7 MeV neutrons.  相似文献   

5.
Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.1, 0.2, 0.4, or 1 Gy of 300 MeV/n 28Si ions, 600 MeV/n 56Fe ions or 1 or 2 Gy of protons simulating the 1972 solar particle event (1972SPE) at the NASA Space Radiation Laboratory. Additional mice were irradiated with 137Cs gamma rays at doses of 1, 2, or 3 Gy. All groups were followed until they were moribund or reached 800 days of age. We found that 28Si or 56Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia. However, 28Si or 56Fe ion irradiated mice had a much higher incidence of hepatocellular carcinoma than gamma ray irradiated or proton irradiated mice. These data demonstrate a clear difference in the effects of these HZE ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. Also seen in this study was an increase in metastatic hepatocellular carcinoma in the 28Si and 56Fe ion irradiated mice compared with those exposed to gamma rays or 1972SPE protons, a finding with important implications for setting radiation exposure limits for space-flight crew members.  相似文献   

6.
The eyes of Sprague-Dawley rats were irradiated with doses of 2.5-10 Gy 250-kVp X rays, 1.25-2.25 Gy fission-spectrum neutrons (approximately 0.85 MeV), or 0.1-2.0 Gy 600-MeV/A 56Fe particles. Lens opacifications were evaluated for 51-61 weeks following X and neutron irradiations and for 87 weeks following X and 56Fe-particle irradiations. Average stage of opacification was determined relative to time after irradiation, and the time required for 50% of the irradiated lenses to achieve various stages (T50) was determined as a function of radiation dose. Data from two experiments were combined in dose-effect curves as T50 experimental values taken as percentages of the respective T50 control values (T50-% control). Simple exponential curves best describe dose responsiveness for both high-LET radiations. For X rays, a shallow dose-effect relationship (shoulder) up to 4.5 Gy was followed at higher doses by a steeper exponential dose-effect relationship. As a consequence, RBE values for the high-LET radiations are dose dependent. Dose-effect curves for cataracts were compared to those for mitotic abnormalities observed when quiescent lens epithelial cells were stimulated mechanically to proliferate at various intervals after irradiation. Neutrons were about 1.6-1.8 times more effective than 56Fe particles for inducing both cataracts and mitotic abnormalities. For stage 1 and 2 cataracts, the X-ray Dq was 10-fold greater and the D0 was similar to those for mitotic abnormalities initially expressed after irradiation.  相似文献   

7.
Accelerated heavy particles and the lens. VI. RBE studies at low doses   总被引:1,自引:0,他引:1  
We report on the prevalence, hazard, and relative biological effectiveness (RBE) for various stages of lens opacification in rats induced by very low doses of fast argon ions of LET 88 keV/microns, compared to those for X rays. Doses of argon ions from 0.01 to 0.25 Gy were used and RBEs of these ions relative to X rays estimated using a nonparametric technique. At the end of the follow-up period, which encompasses a significant fraction of the animals' lifetime, 90% confidence intervals for the RBE of the argon ions relative to X rays were 4-8 at 0.25 Gy, 10-40 at 0.05 Gy, and 50-100 at 0.01 Gy. Our results are consistent with the point-estimate neutron RBEs in Japanese A-bomb survivors, though broad confidence bounds are present in the Japanese results. If a reasonable extrapolation to higher doses is used, our results are also consistent with data reported earlier at higher doses for argon-ion cataractogenesis in rats, mice, and rabbits. We conclude from these results that at very low doses the RBE for cataractogenesis from HZE particles in space is considerably more than 20, and use of a quality factor of at least 50 would be prudent.  相似文献   

8.
The effect of gamma-, 14 MeV neutron- and fission neutron irradiation was investigated on the growth rate and degrading enzyme activities of pea seedlings. Both dormant pea seeds and 4-day-old growing seedlings were used for the experiments. Depending on the gamma dose between 15 and 300 Gy the height of pea seedlings was found shorter, and parallel with this the endogenous RNase and peroxidase activities were higher than in the unirradiated controls. Seedlings proved to be more sensitive by about one order of magnitude than seeds. Irradiation of seeds between 5 and 10 Gy slightly enhanced the growth rate of seedlings (10 per cent) and parallel with this, the RNase activity measured was lower than that in the controls. On irradiation of seedlings with 14 MeV neutrons the growth inhibition and RNase activity enhancement was only 1.3 times more effective than in the case of irradiation of seeds. The following RBE values were obtained after irradiation of seeds, related to the biological effect of gamma rays: in growth inhibition, 6 for 14 MeV neutrons and 12 for fission neutrons, and the enhancement of two enzyme activities was 15-30 for 14 MeV neutrons and 45-58 for fission neutrons. In the case of seedling irradiation with 14 MeV neutrons the RBE was 1.0 for growth inhibition and between 3 and 6 for enhancement of enzyme activity. The isoenzyme pattern of RNase also changed: two isoenzymes became predominant after the gamma irradiation of seeds, characterized by molecular weights of 21,000 and 30,000, respectively. As a result of enhanced RNase activity, the degradation of longer polysomes to monomeric ribosomes occurred. Thus after ionizing irradiation of pea seeds and seedlings an inverse correlation was found between the growth rate of pea seedlings and the activities of degrading enzymes.  相似文献   

9.
Study of heavy ion radiation-induced effects on mice could provide insight into the human health risks of space radiation exposure. The purpose of the present study is to assess the relative biological effectiveness (RBE) of (12)C and (28)Si ion radiation, which has not been reported previously in the literature. Female C57BL/6J mice (n = 15) were irradiated using 4-8 Gy of (28)Si (300 MeV/nucleon energy; LET 70 keV/μm) and 5-8 Gy of (12)C (290 MeV/nucleon energy; LET 13 keV/μm) ions. Post-exposure, mice were monitored regularly, and their survival observed for 30 days. The LD(50/30) dose (the dose at which 50 % lethality occurred by 30-day post-exposure) was calculated from the survival curve and was used to determine the RBE of (28)Si and (12)C in relation to γ radiation. The LD(50/30) for (28)Si and (12)C ion is 5.17 and 7.34 Gy, respectively, and the RBE in relation to γ radiation (LD(50/30)-7.25 Gy) is 1.4 for (28)Si and 0.99 for (12)C. Determination of RBE of (28)Si and (12)C for survival in mice is not only important for space radiation risk estimate studies, but it also has implications for HZE radiation in cancer therapy.  相似文献   

10.
The induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia was studied using multivalent analysis at metaphase of primary spermatocytes. Animals were exposed to 1 Gy gamma-rays at dose rates of 140 and 0.2 mGy/min or to 0.25 Gy acute 2 MeV neutrons. Reduction of the dose rate from 140 mGy/min to 0.2 mGy/min did not result in a lowering of the frequencies of recovered translocations of 0.43%. The neutron data indicated an RBE (neutrons vs. X-rays) of 2.1, which is clearly lower than the value of 4 obtained in the mouse. It is made plausible that in general mammalian species with high sensitivities for the cytotoxic effects of ionizing radiation, such as the rhesus monkey, will exhibit relatively high threshold dose rates below which no further reduction in aberration yield occurs, whereas in more resistant species, such as the mouse, the threshold dose rate will be at a very low level. Similarly, resistant species will show relatively high RBE values for neutron irradiation and sensitive species low ones.  相似文献   

11.
Dose-response curves for micronucleus (MN) formation were measured in Chinese hamster V79 and xrs6 (Ku80(-)) cells and in human mammary epithelial MCF10A cells in the dose range of 0.05-1 Gy. The Chinese hamster cells were exposed to 1 GeV/nucleon iron ions, 600 MeV/nucleon iron ions, and 300 MeV/nucleon iron ions (LETs of 151, 176 and 235 keV/microm, respectively) as well as with 320 kVp X rays as reference. Second-order polynomials were fitted to the induction curves, and the initial slopes (the alpha values) were used to calculate RBE. For the repair-proficient V79 cells, the RBE at these low doses increased with LET. The values obtained were 3.1 +/- 0.8 (LET = 151 keV/microm), 4.3 +/- 0.5 (LET = 176 keV/microm), and 5.7 +/- 0.6 (LET = 235 keV/microm), while the RBE was close to 1 for the repair-deficient xrs6 cells regardless of LET. For the MCF10A cells, the RBE was determined for 1 GeV/nucleon iron ions and was found to be 5.5 +/- 0.9, slightly higher than for V79 cells. To test the effect of shielding, the 1 GeV/nucleon iron-ion beam was intercepted by various thicknesses of high-density polyethylene plastic absorbers, which resulted in energy loss and fragmentation. It was found that the MN yield for V79 cells placed behind the absorbers decreased in proportion to the decrease in dose both before and after the iron-ion Bragg peak, indicating that RBE did not change significantly due to shielding except in the Bragg peak region. At the Bragg peak itself with an entrance dose of 0.5 Gy, where the LET is very high from stopping low-energy iron ions, the effectiveness for MN formation per unit dose was decreased compared to non-Bragg peak areas.  相似文献   

12.
After exposure to various doses of 250 kVp X radiation, 0.85 Me V fission spectrum neutrons, or 600 MeV/A iron (Fe) particles, mitotically quiescent rat lens cells showed no visible evidence of radiation injury. However, following the mitogenic stimulus of wounding, mitotic abnormalities became evident when responding cells entered mitosis. Latent damage and recovery therefrom were monitored at 3, 7, 14, and 28 days after irradiation. Following doses of 1 to 10 Gy of X radiation, the recovery rate, indicated by a decrease in abnormalities with time, was proportional to dose, and the dose-effect slope decreased exponentially with time. Virtually no recovery occurred during the 28 days after 1.25 to 2.25 Gy of fission neutron radiation. After doses of 0.5 to 3.0 Gy of Fe particles, an increased expression of mitotic damage or recovery than recovery occurred. As a consequence of the differing patterns in time for expression of damage or recovery following X rays and the high-LET radiations, the relative biological effectiveness (RBE) increased from 3.6 to 16 for neutrons and from 2 to 10 for Fe particles over the 28-day observation period.  相似文献   

13.
The acute radiosensitivity in vivo of the murine hematopoietic stroma for 1 MeV fission neutrons or 300 kVp X rays was determined. Two different assays were used: (1) an in vitro clonogenic assay for fibroblast precursor cells (CFU-F) and (2) subcutaneous grafting of femora or spleens. The number of stem cells (CFU-S) or precursor cells (CFU-C), which repopulated the subcutaneous implants, was used to measure the ability of the stroma to support hemopoiesis. The CFU-F were the most radiosensitive, and the survival curves after neutron and X irradiation were characterized by D0 values of 0.75 and 2.45 Gy, respectively. For regeneration of CFU-S and CFU-C in subcutaneously implanted femora, D0 values of 0.92 and 0.84 Gy after neutron irradiation and 2.78 and 2.61 Gy after X irradiation were found. The regeneration of CFU-S and CFU-C in subcutaneously implanted spleens was highly radioresistant as evidenced by D0 values of 2.29 and 1.49 Gy for survival curves obtained after neutron irradiation, and D0 values of 6.34 and 4.85 Gy after X irradiation. The fission-neutron RBE for all the cell populations was close to 3 and varied from 2.77 to 3.28. The higher RBE values observed for stromal cells, compared to the RBE of 2.1 reported previously for hemopoietic stem cells, indicate that stromal cells are relatively more sensitive than hemopoietic cells to neutron irradiation.  相似文献   

14.
Synchronous suspensions of the radiosensitive S/S variant of the L5178Y murine leukaemic lymphoblast at different positions in the cell cycle were exposed aerobically to segments of heavy-ion beams (20Ne, 28Si, 40Ar, 56Fe and 93Nb) in the Bragg plateau regions of energy deposition. The incident energies of the ion beams were in the range of 460 +/- 95 MeV u-1, and the calculated values of linear energy transfer (LET infinity) for the primary nuclei in the irradiated samples were 33 +/- 3, 60 +/- 3, 95 +/- 5, 213 +/- 21 and 478 +/- 36 keV microns-1, respectively; 280 kVp X-rays were used as the baseline radiation. Generally, the maxima or inflections in relations between relative biological effectiveness (RBE) and LET infinity were dependent upon the cycle position at which the cells were irradiated. Certain of those relations were influenced by post-irradiation hypothermia. Irradiation in the cell cycle at mid-G1 to mid-G1 + 3 h, henceforth called G1 to G1 + 3 h, resulted in survival curves that were close approximations to simple exponential functions. As the LET infinity was increased, the RBE did not exceed 1.0, and by 478 keV microns-1 it had fallen to 0.39. Although similar behaviour has been reported for inactivation of proteins and certain viruses by ionizing radiations, so far the response of the S/S variant is unique for mammalian cells. The slope of the survival curve for X-photons (D0: 0.27 Gy) is reduced in G1 to G1 + 3 h by post-irradiation incubation at hypothermic temperatures and reaches a minimum (Do: 0.51 Gy) at 25 degrees C. As the LET infinity was increased, however, the extent of hypothermic recovery was reduced progressively and essentially was eliminated at 478 keV microns-1. At the cycle position where the peak of radioresistance to X-photons occurs for S/S cells, G1 + 8 h, increases in LET infinity elicited only small increases in RBE (at 10% survival), until a maximum was reached around 200 keV microns-1. At 478 keV microns-1, what little remained of the variation in response through the cell cycle could be attributed to secondary radiations (delta rays) and smaller nuclei produced by fragmentation of the primary ions.  相似文献   

15.
Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In previous ground-based experiments, exposure to high doses of HZE-particle radiation induced pronounced deficits in hippocampus-dependent learning and memory in rodents. Recent data suggest that glutamatergic transmission in hippocampal synaptosomes is impaired after low (60 cGy) doses of 1 GeV/u (56)Fe particles, which could lead to impairment of hippocampus-dependent spatial memory. To assess the effects of mission-relevant (20-60 cGy) doses of 1 GeV/u (56)Fe particles on hippocampus-dependent spatial memory, male Wistar rats either received sham treatment or were irradiated and tested 3 months later in the Barnes maze test. Compared to the controls, rats that received 20, 40 and 60 cGy 1 GeV/u (56)Fe particles showed significant impairments in their ability to locate the escape box in the Barnes maze, which was manifested by progressively increasing escape latency times over the 3 days of testing. However, this increase was not due to a lack of motivation of the rats to escape, because the total number of head pokes (and especially incorrect head pokes) remained constant over the test period. Given that rats exposed to X rays did not exhibit spatial memory impairments until >10 Gy was delivered, the RBE for 1 GeV/u (56)Fe-particle-induced hippocampal spatial memory impairment is ~50. These data demonstrate that mission-relevant doses of 1 GeV/u (56)Fe particles can result in severe deficits in hippocampus-dependent neurocognitive tasks, and the extreme sensitivity of these processes to 1 GeV/u (56)Fe particles must arise due to the perturbation of multiple processes in addition to killing neuronal cells.  相似文献   

16.
To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.  相似文献   

17.
The effects of 60Co gamma-ray and 290 MeV/amu carbon ion irradiation on negative gravitaxis was studied in the photosynthetic flagellate Euglena gracilis strain Z in a dose-response dependent manner. Cells were exposed to the doses (0-200 Gy for water). The negative gravitaxis was quantified by the r-value observed in a recently developed biomonitoring system. The present results demonstrate the inhibitory effects of gamma-rays and 290 MeV/amu carbon ions on negative gravitaxis of the Euglena gracilis strain Z. The 290 MeV/amu carbon ions had a greater impact at a low dose (<40 Gy) than the 60Co gamma-rays.  相似文献   

18.
Relative biological effectiveness (RBE) of gamma-neutron radiation with neutron energy of 0.9 MeV was estimated with a reference to rat death. It was shown that RBE of gamma-neutron radiation (the share of neutrons was 67% as related to dose) at LD33/30 and LD100/30 was 2, and RBE of 0.9 MeV neutrons, in experiments with mixed radiation, was 3.1 and 2.86 at LD33/30 and LD100/30, respectively. The value of a maximum dose at which death was not registered during 30 days, was 1 Gy with gamma-neutron radiation and 4 Gy with X-radiation.  相似文献   

19.
The relative biological effectiveness (RBE) of a range of neutron energies relative to 250-kVp X rays has been determined for oncogenic transformation and cell survival in the mouse C3H 10T 1/2 cell line. Monoenergetic neutrons at 0.23, 0.35, 0.45, 0.70, 0.96, 1.96, 5.90, and 13.7 MeV were generated at the Radiological Research Accelerator Facility of the Radiological Research Laboratories, Columbia University, and were used to irradiate asynchronous cells at low absorbed doses from 0.05 to 1.47 Gy. X irradiations covered the range 0.5 to 8 Gy. Over the more than 2-year period of this study, the 31 experiments provided comprehensive information, indicating minimal variability in control material, assuring the validity of comparisons over time. For both survival and transformation, a curvilinear dose response for X rays was contrasted with linear or nearly linear dose responses for the various neutron energies. RBE increased as dose decreased for both end points. Maximal RBE values for transformation ranged from 13 for cells exposed to 5.9-MeV neutrons to 35 for 0.35-MeV neutrons. This study clearly shows that over the range of neutron energies typically seen by nuclear power plant workers and individuals exposed to the atomic bombs in Japan, a wide range of RBE values needs to be considered when evaluating the neutron component of the effective dose. These results are in concordance with the recent proposals in ICRU 40 both to change upward and to vary the quality factor for neutron irradiations.  相似文献   

20.
Rats exposed to fast 24 MeV electrons (100 Gy) at the state of early transient incapacity (ETI) exhibited active release and reuptake of dopamine in nerve terminals of the striatum. No changes in the indices under study were found in rats exposed to 25 Gy radiation that did not cause the ETI development. The in vitro irradiation of the isolated synaptosomes (100 Gy) inhibited dopamine reuptake and increased the number of sites of 3H-spiperone binding to D2-receptors in a membrane fraction isolated from the striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号