首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are no doubts that transposable elements (TEs) have greatly influenced genomes evolution. They have, however, evolved in different ways throughout mammals, plants, and invertebrates. In mammals they have been shown to be widely present but with low transposition activity; in plants they are responsible for large increases in genome size. In Drosophila, despite their low amount, transposition seems to be higher. Therefore, to understand how these elements have evolved in different genomes and how host genomes have proposed to go around them, are major questions on genome evolution. We analyzed sequences of the retrotransposable elements 412 in natural populations of the Drosophila simulans and D. melanogaster species that greatly differ in their amount of TEs. We identified new subfamilies of this element that were the result of mutation or insertion-deletion process, but also of interfamily recombinations. These new elements were well conserved in the D. simulans natural populations. The new regulatory regions produced by recombination could give rise to new elements able to overcome host control of transposition and, thus, become potential genome invaders.  相似文献   

2.
Dolgin ES  Charlesworth B 《Genetics》2006,174(2):817-827
Sexual reproduction and recombination are important for maintaining a stable copy number of transposable elements (TEs). In sexual populations, elements can be contained by purifying selection against host carriers with higher element copy numbers; however, in the absence of sex and recombination, asexual populations could be driven to extinction by an unchecked proliferation of TEs. Here we provide a theoretical framework for analyzing TE dynamics under asexual reproduction. Analytic results show that, in an infinite asexual population, an equilibrium in copy number is achieved if no element excision is possible, but that all TEs are eliminated if there is some excision. In a finite population, computer simulations demonstrate that small populations are driven to extinction by a Muller's ratchet-like process of element accumulation, but that large populations can be cured of vertically transmitted TEs, even with excision rates well below transposition rates. These results may have important consequences for newly arisen asexual lineages and may account for the lack of deleterious retrotransposons in the putatively ancient asexual bdelloid rotifers.  相似文献   

3.
C. Biémont 《Genetica》1992,86(1-3):67-84
This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evalution are discussed.  相似文献   

4.
转座元件是指在基因组中能够移动、复制并重新整合到基因组新位点的DNA片段.转座元件一度被视为基因组内的“垃圾”或“自私DNA”,长期以来,转座元件的研究主要集中于阐释转座元件在宿主中的复制或表观沉默机制,而转座元件的调控功能并未得到全面探讨.已有研究表明,转座元件的比例与物种基因组大小存在正相关性,从而为C值悖论的解释提供了依据.近年来,越来越多的证据表明转座元件可以作为宿主基因组的“控制元件”发挥重要的调控作用.在作物中研究发现,转座元件既可以通过顺式或反式作用方式调控基因表达,也可以诱导表观等位基因的产生,从而促使固着生长的植物更好地适应外界环境的变化.本文拟就高等植物转座元件的作用及其对未来作物育种的意义进行总结.  相似文献   

5.
Transposable elements are short but complex pieces of DNA or RNA containing a streamlined minimal-genome with the capacity for its selfish replication in a foreign genomic environment. Cis-regulatory sections within the elements orchestrate tempo and mode of TE expression. Proteins encoded by TEs mainly direct their own propagation within the genome by recruitment of host-encoded factors. On the other hand, TE-encoded proteins harbor a very attractive repertoire of functional abilities for a cell. These proteins mediate excision, replication and integration of defined DNA fragments. Furthermore, some of these proteins are able to manipulate important host factors by altering their original function. Thus, if the host genome succeeds in domesticating such TE-encoded proteins by taming their ‘anarchistic behavior,’ such an event can be considered as an important evolutionary innovation for its own benefit. In fact, the domestication of TE-derived cis-regulatory modules and protein coding sections took place repeatedly in the course of genome evolution. We will present prominent cases that impressively demonstrate the beneficial impact of TEs on host biology over evolutionary time. Furthermore, we will propose that molecular domestication might be considered as a resumption of the same evolutionary process that drove the transition from ‘primitive genomes’ to ‘modern’ ones at the early dawn of life, that is, the adaptive integration of a short piece of autonomous DNA into a complex regulatory network. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
7.
Transposable elements (TEs) account for nearly half (44 %) of the human genome. However, their overall activity has been steadily declining over the past 35–50 million years, so that <0.05 % of TEs are presumably still “alive” (potentially transposable) in human populations. All the active elements are retrotransposons, either autonomous (LINE-1 and possibly the endogenous retrovirus ERVK), or non-autonomous (Alu and SVA, whose transposition is dependent on the LINE-1 enzymatic machinery). Here we show that a lineage of the endogenous retrovirus ERVE was recently engaged in ectopic recombination events and may have at least one potentially fully functional representative, initially reported as a novel retrovirus isolated from blood cells of a Chinese patient with chronic myeloid leukemia, which bears signals of positive selection on its envelope region. Altogether, there is strong evidence that ERVE should be included in the short list of potentially active TEs, and we give clues on how to identify human specific insertions of this element that are likely to be segregating in some of our populations.  相似文献   

8.
It has now been established that transposable elements (TEs) make up a variable, but significant proportion of the genomes of all organisms, from Bacteria to Vertebrates. However, in addition to their quantitative importance, there is increasing evidence that TEs also play a functional role within the genome. In particular, TE regulatory regions can be viewed as a large pool of potential promoter sequences for host genes. Studying the evolution of regulatory region of TEs in different genomic contexts is therefore a fundamental aspect of understanding how a genome works. In this paper, we first briefly describe what is currently known about the regulation of TE copy number and activity in genomes, and then focus on TE regulatory regions and their evolution. We restrict ourselves to retrotransposons, which are the most abundant class of eukaryotic TEs, and analyze their evolution and the subsequent consequences for host genomes. Particular attention is paid to much-studied representatives of the Vertebrates and Invertebrates, Homo sapiens and Drosophila melanogaster, respectively, for which high quality sequenced genomes are available.  相似文献   

9.
Hall BG 《Genetica》1999,107(1-3):181-187
The concept of transposable elements (TEs) as purely selfish elements is being challenged as we have begun to appreciate the extent to which TEs contribute to allelic diversity, genome building, etc. Despite these long-term evolutionary contributions, there are few examples of TEs that make a direct, positive contribution to adaptive fitness. In E.coli cryptic (silent) catabolic operons can be activated by small TEs called insertion sequences (IS elements). Not only do IS elements make a direct contribution to fitness by activating cryptic operons, they do so in a regulated manner, transposing at a higher rate in starving cells than in growing cells. In at least one case, IS elements activate an operon during starvation only if the substrate for that operon is present in the environment. It appears that E. coli has managed to take advantage of ISelements for its own benefit. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Various mathematical models have been used to explore the dynamics of transposable elements (TEs) within their host genomes. However, numerous factors can influence their dynamics, and we know only little about the dynamics of TEs when they first began to invade populations. In addition, the influence of population structuring has only recently been investigated. Transposable Element Simulator Dynamics, a population genomics simulation environment, has therefore been developed to provide a simple tool for analyzing the dynamics of TEs in a community based on (i) various TE parameters, such as the transposition and excision rates, the recombination rate and the coefficient of selection against TE insertions; and (ii) population parameters, such as population size and migration rates. The simulations can be used to illustrate the dynamic fate of TEs in structured populations, can be extended by using more specific molecular or demographic models, and can be useful for teaching population genetics and genomics. AVAILABILITY: TESD is distributed under GPL from the P?le Bioinformatique Lyonnais (PBIL) web server at http://pbil.univ-lyon1.fr/software/TESD  相似文献   

11.
Transposable elements are ubiquitous in all organisms and represent a dynamic component of their genomes, causing mutations and thereby genetic variation. Because of their independent and expansive replication strategy, these elements are called selfish and were thought to have no impact on the adaptive evolution of their host organisms. Although most TE-induced mutations seem to exert only negative effects on the fitness of their carrier, recent evidence indicates that in the course of evolution at least some TE-mediated changes have become established features of the host genome. For example, the insertion of TEs may provide novel cis-regulatory regions to preexisting host genes or TE-derived trans-acting factors may undergo a molecular transition into novel host genes through a process described as molecular domestication. The stationary P element related gene clusters of D. guanche, D. madeirensis and D. subobscura provide an excellent model system to study the evolutionary impact of TEs on genome evolution. Each cluster unit consists of a cis-regulating section composed of different insertion sequences followed by the first three exons of a P element that are coding for a 66 kDa ‘repressor-like’ protein. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
T. Hogetsu 《Protoplasma》1990,156(1-2):67-73
Summary Binding of fluorescein-conjugated wheat-germ agglutinin (F-WGA) and some other lectins to tissues from various plants were examined by epifluorescence microscopy. F-WGA bound specifically to the walls of tracheary elements (TEs) and phloem cells of pea roots. The binding sites in TEs were localized only in the secondary thickening and became evident at very early stages of differentiation. Fluorescein-conjugated derivatives ofSolanum tuberosum lectin,Lycopersicon esculentum lectin, andDatura stramonium lectin, which bind N-acetylglucosamine residues as WGA, also bound to the secondary thickening of TEs of pea roots. The binding sites for F-WGA were not removed by extraction with hot EDTA and proteinase K, but removed by extraction with an alkali solution. The alkali-extracted binding sites from the roots were precipitated together with hemicelluloses by 80% ethanol. These results indicate that the binding sites are not present on pectins, proteins, or cellulose, but hemicelluloses. Localized distribution of the binding sites for F-WGA in TEs was found also in a variety of angiosperm plants.Abbreviations BSL-II Bandeiraea simplicifolia lectin II - DSL Datura stramonium lectin - F fluorescein-conjugated - LEL Lycopersicon esculentum lectin - MT microtubule - STL Solanum tuberosum lectin - TE tracheary element - WGA wheat-germ agglutinin  相似文献   

13.
14.
Transposable elements (TEs) are powerful mutagenic agents responsible for generating variation in the host genome. As TEs can be overtly deleterious, a variety of different mechanisms have evolved to keep their activities in check. In plants, fungi, and animals, RNA silencing has been implicated as a major defense against repetitive element transposition. This nucleic acid-based defense mechanism also appears to be directed at inherited silencing of TEs without altering the underlying DNA sequence. Complex interactions between TEs and RNA silencing machineries have been co-opted to regulate cellular genes.  相似文献   

15.
Transposable elements (TEs) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized host genomes (Sel-DE model) or by saturation of host genomes (Sat-DE model). Bacterial group II introns are suspected to follow an extinction-recolonization model of evolution, but whether they follow Sel-DE or Sat-DE dynamics is not known. Our analysis of almost 200 group II intron copies from 90 sequenced Enterobacteriales genomes confirms their extinction-recolonization dynamics: patchy element distributions among genera and even among strains within genera, acquisition of new group II introns through plasmids or other mobile genetic elements, and evidence for recent proliferations in some genomes. Distributions of recent and past proliferations and of their respective homing sites further provide strong support for the Sel-DE model, suggesting that group II introns are deleterious to their hosts. Overall, our observations emphasize the critical impact of host properties on TE dynamics.  相似文献   

16.
Transposable elements (TEs) are ubiquitous sequences in genomes of virtually all species. While TEs have been investigated for several decades, only recently we have the opportunity to study their genome‐wide population dynamics. Most of the studies so far have been restricted either to the analysis of the insertions annotated in the reference genome or to the analysis of a limited number of populations. Taking advantage of the European Drosophila population genomics consortium (DrosEU) sequencing data set, we have identified and measured the dynamics of TEs in a large sample of European Drosophila melanogaster natural populations. We showed that the mobilome landscape is population‐specific and highly diverse depending on the TE family. In contrast with previous studies based on SNP variants, no geographical structure was observed for TE abundance or TE divergence in European populations. We further identified de novo individual insertions using two available programs and, as expected, most of the insertions were present at low frequencies. Nevertheless, we identified a subset of TEs present at high frequencies and located in genomic regions with a high recombination rate. These TEs are candidates for being the target of positive selection, although neutral processes should be discarded before reaching any conclusion on the type of selection acting on them. Finally, parallel patterns of association between the frequency of TE insertions and several geographical and temporal variables were found between European and North American populations, suggesting that TEs can be potentially implicated in the adaptation of populations across continents.  相似文献   

17.

Background  

Transposable elements (TEs) constitute an important source of genetic variability owing to their jumping and regulatory properties, and are considered to drive species evolution. Several factors that are able to induce TE transposition in genomes have been documented (for example environmental stress and inter- and intra-specific crosses) but in many instances the reasons for TE mobilisation have yet to be elucidated. Colonising populations constitute an ideal model for studying TE behaviour and distribution as they are exposed to different environmental and new demographic conditions. In this study, the distribution of two TEs, Osvaldo and Isis, was examined in two colonising populations of D. buzzatii from Australia. Comparing Osvaldo copy numbers between Australian and Old World (reported in previous studies) colonisations provides a valuable tool for elucidating the colonisation process and the effect of new conditions encountered by colonisers on TEs.  相似文献   

18.
Fungal transposable elements and genome evolution   总被引:9,自引:0,他引:9  
M.J. Daboussi 《Genetica》1997,100(1-3):253-260
The transposable elements (TEs) identified in fungal genomes reflect the whole spectrum of eukaryotic transposable elements. Most of our knowledge comes from species representing different ecological situations: plant pathogens, industrial, and field strains, most of them lacking the sexual stage. A number of changes in gene structure and function has been shown to be TE-mediated: inactivation of gene expression upon insertion within or adjacent to a gene, DNA sequence variation through excision and probably extensive chromosomal rearrangements due to recombination between members of a particular family. Moreover, TEs may have other roles in evolution related to their ability to be horizontally transferred and to capture and transpose chromosomal host sequences, thus providing a mechanism for dispersing sequences to new sites. However, the activity of transposable elements and consequently their proliferation within a host genome can be affected, in some fungal species which undergo meiosis, by silencing processes. Our understanding of the biological effects of TEs on the fungal genome has increased dramatically in the past few years but elucidation of the extent to which transposons contribute to genetic variation in nature, providing the flexibility for populations to adapt successfully to environmental changes is an important area for future research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Transposable elements (TEs) are mobile genetic elements that can have many deleterious effects on the fitness of their host. The germline-specific PIWI pathway guards the genome against TEs, deriving its specificity from sequence complementarity between PIWI-bound small RNAs (piRNAs) and the TEs. The piRNAs are derived from so-called piRNA clusters. Recent studies have demonstrated that the piRNA repertoire can be adjusted to accommodate recent TE invasions by capturing invading TEs in piRNA loci. Thus far, no information concerning piRNA divergence is available from vertebrates. We present piRNA analyses of two relatively divergent zebrafish strains. We find that significant differences in the piRNA populations have accumulated, most notably among active class I TEs. This divergence can be split into differences in piRNA abundance per element and differences in sense/antisense polarity ratios. In crosses between animals of the different strains, many of these differences are resolved in the progeny. However, some differences remain, often leaning to the maternally contributed piRNA population. These differences can be detected at least two generations later. Our data illustrate, for the first time, the fluidity of piRNA populations in vertebrates and how the established diversity is transmitted to future generations.  相似文献   

20.
Evolution is frequently concentrated in bursts of rapid morphological change and speciation followed by long‐term stasis. We propose that this pattern of punctuated equilibria results from an evolutionary tug‐of‐war between host genomes and transposable elements (TEs) mediated through the epigenome. According to this hypothesis, epigenetic regulatory mechanisms (RNA interference, DNA methylation and histone modifications) maintain stasis by suppressing TE mobilization. However, physiological stress, induced by climate change or invasion of new habitats, disrupts epigenetic regulation and unleashes TEs. With their capacity to drive non‐adaptive host evolution, mobilized TEs can restructure the genome and displace populations from adaptive peaks, thus providing an escape from stasis and generating genetic innovations required for rapid diversification. This “epi‐transposon hypothesis” can not only explain macroevolutionary tempo and mode, but may also resolve other long‐standing controversies, such as Wright's shifting balance theory, Mayr's peripheral isolates model, and McClintock's view of genome restructuring as an adaptive response to challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号