首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apolipoprotein E (apoE) is a ligand for the low density lipoprotein receptor (LDLR) and the low density lipoprotein receptor-related protein (LRP). The aim of the present study was to clarify the role of hepatically localized apoE in the rapid initial removal of chylomicron remnants by using the isolated perfused liver. Radiolabeled chylomicron remnants were perfused in a single nonrecirculating pass into the livers of C57BL/6J (wild-type) mice, apoE-knockout mice, and apoE/LDLR-knockout mice for a period of 20 min. Aliquots of the perfusate leaving the liver were collected at regular intervals and the rate of removal of radioactivity was determined. At a trace concentration of chylomicron remnants (0.05 microgram of protein per ml), wild-type mouse livers removed at a steady state of 50-55% of total chylomicron remnants perfused per pass; livers from apoE-knockout mice had the same capacity as wild-type mouse livers. When the concentration of remnants was increased to 12 microgram of protein per ml, a level at which it has been shown that LDL receptor and LRP are near saturation, the capacity of the wild-type mouse livers to remove chylomicron remnants was decreased to 10-25% per pass, confirming that the removal mechanisms were nearing saturation. However, instead of finding a greater reduction in the removal rates or impairment in chylomicron remnant removal, livers from apoE-knockout mice were just as efficient as those from wild-type mice in removing remnants. Livers of mice that lacked both apoE and the LDLR also had a similar rate of removal at relatively low remnant concentrations (0.05-0.5 microgram/ml), but had reduced capacity in removing remnants at a relatively high concentration (4-12 microgram/ml) of chylomicron remnants ( approximately 20% per pass). The rate of removal at these concentrations, however, was similar to that attributed to the LRP in previous studies. Chylomicron remnants, whose apolipoproteins were disrupted by trypsinization, were removed at a normal rate by wild-type mouse livers but there was almost no removal by apoE-knockout mouse livers. At higher concentrations, however, the removal of apolipoprotein-disrupted chylomicron remnants was decreased.Our present findings do not support the hypothesis that hepatically localized apoE is a critical factor in the rapid initial removal of chylomicron remnants by either of the major pathways but do suggest that hepatically localized apoE can be added to lipoproteins to accelerate their uptake, although this process may have a limited capacity to compensate for apoE deficiency on lipoproteins.  相似文献   

2.
The LDL receptor and the LDL receptor-related protein (LRP) mediate the removal of chylomicron remnants. The LRP pathway involves sequestration of particles in the space of Disse. It has been proposed that either alone or in combination with other factors, such as apolipoprotein E and proteoglycans, hepatic lipase (HL) may contribute to the sequestration of chylomicron remnants. To test this hypothesis, we generated two lines of transgenic mice producing rat HL as a native or as a membrane-anchored form. These animals express HL at levels similar to normal rat. Chylomicron remnants were perfused in a single nonrecirculating pass into the livers of the rat HL transgenic, HL-deficient, and wild-type (WT) mice for 20 min, and the rate of chylomicron remnant removal was measured. Chylomicron remnants were removed at a rate of approximately 50% per pass in WT mice. It was slightly increased in both transgenic mice and reduced in HL-deficient mice compared with the WT mice. Confocal microscopy of liver sections showed that a modest amount of HL colocalized with chylomicron remnant clusters in the transgenic mice, suggesting that HL is a component of the LRP-proteoglycan clusters. These data suggest that HL helps to direct cholesterol to the tissues in which it is localized by a nonenzymatic mechanism.  相似文献   

3.
The contribution of the low density lipoprotein (LDL) receptor to the removal of chylomicron remnants was determined in vitro and in vivo by using interventions that up- or down-regulate the LDL receptor but not the LDL receptor-related protein (LRP). In vitro, chylomicron remnants and beta-very low density lipoprotein (VLDL) bind to the LDL receptor on endosomal membranes; their binding can be competed by LDL and beta-VLDL and the binding capacity is greatly augmented in membranes from estradiol-treated rats. Likewise, estradiol treatment almost doubled the removal of chylomicron remnants during a single pass through perfused rat livers. However, in vivo the removal of chylomicron remnants and beta-VLDL was very rapid even in untreated rats so that the effect of the stimulation by estradiol was barely detectable when trace amounts of lipoproteins were injected. Yet, when saturating doses of either lipoprotein were injected, the effect of estradiol treatment on the removal of chylomicron remnants and beta-VLDL was readily disclosed. In rats fed a diet containing lard, cholesterol, and bile acids, removal of chylomicron remnants or beta-VLDL was significantly retarded. Likewise, perfused livers from diet-fed rats removed only a mean of 16% of chylomicron remnants during a single passage as compared to 29% in livers from control animals. Also, when large doses of beta-VLDL had been infused into rats for 4 h, in subsequent perfusions of the livers the removal of chylomicron remnants was decreased to 11%. From these results it is concluded that the LDL receptor mediates the hepatic removal of a major fraction of chylomicron remnants and beta-VLDL.  相似文献   

4.
Chylomicron remnants are removed intact by isolated perfused rat livers and their lipid components are metabolized by the liver (Biochim. Biophys. Acta 488: 464, 1977). The present study provides quantitative information regarding these processes. When the lipoprotein concentration of the perfusate was constant, the removal of chylomicron remnants increases lineraly for 17 min. The rate of remnant removal was a hyperbolic function of the perfusate's remnant concentration. The removal rate had aV max of 28microgram cholesterol per g liver per min and an apparent Km of 64 microgram cholesterol per ml perfusate. Feeding the liver donors a diet containing 1% cholesterol or 4% cholesterol and 1% cholic acid failed to alter the hepatic removal rate. The cholesteryl ester removed from the remnants was hydrolyzed at a rate that was a small fraction of the removal rate (about 0.5% of removed cholesteryl ester per min). The rate of cholesteryl ester hydrolysis did not appear to approach saturation in the range studied. Studies of the lysosomal cholesteryl ester hydrolase suggested that this enzyme was not responsible for limiting the initial rate of hydrolysis, raising the possibility that the degradation rate is determined by the movement of the removed remnant to the site of hydrolysis.  相似文献   

5.
Binding and uptake of rat chylomicrons of different metabolic stages by the hepatic low-density-lipoprotein (LDL) receptor were studied. Pure chylomicrons, characterized by apolipoprotein B-48 devoid of contaminating B-100, were labelled in their cholesteryl esters. Lymph chylomicrons and serum chylomicrons, enriched in apolipoprotein E and the C-apolipoproteins, bound poorly to rat hepatic membranes. In contrast, chylomicron remnants, containing the apolipoproteins B-48 and E, bound with high affinity. Specific binding of remnants was virtually completely competed for by LDL free of apolipoprotein E. In addition, in ligand blots both remnants and LDL associated with the same protein with an Mr characteristic of the LDL receptor. Uptake of remnants during a single pass through isolated perfused rat livers was decreased to about 50% by an excess of LDL. It is concluded that rat chylomicron remnants are a ligand of the hepatic LDL receptor. The much higher affinity as compared with LDL is mediated by apolipoprotein E but not B-48, and is inhibited by the C-apolipoproteins. This explains why serum chylomicrons are not taken up by the liver, whereas remnants are rapidly removed from the circulation. Results from experiments in vivo suggest that the LDL receptor makes an important contribution to the hepatic uptake of remnants and may be the principal binding site of the liver responsible for remnant removal.  相似文献   

6.
Apolipoprotein E2 (apoE2) and apoE3-Leiden cause chylomicron remnant accumulation (type III hyperlipidemia). However, the degree of dyslipidemia and its penetrance are different in humans and mice. Remnant uptake by isolated liver from apoE-/- mice transgenic for human apoE2, apoE3-Leiden, or apoE3 was measured. In the presence of both LDL receptor (LDLR) and LDL receptor-related protein (LRP), remnant uptake was apoE3>E3-Leiden>E2 mice. Absence of LDLR reduced uptake in apoE3 and apoE3-Leiden-secreting livers but not in apoE2-secreting livers. LRP inhibition with receptor-associated protein reduced uptake in apoE3- and apoE2-secreting livers, but not in apoE3-Leiden-secreting livers, regardless of the presence of LDLR. Fluorescently labeled remnants clustered with LRP in apoE3-secreting livers only in the absence of LDLR, but clustered in livers that expressed apoE2 even in the presence of LDLR, and did not cluster with LRP in livers of apoE3-Leiden even in the absence of LDLR. Remnants were reconstituted with the three human apoE isoforms. Removal by liver of mApoe-/-/mldlr-/- mice expressing the human LDLR was slightly greater than removal in the previous experiments with apoE3>E2> E3-Leiden. Thus, in vivo, human apoE2 is cleared primarily by LRP, apoE3-Leiden is cleared only by the LDLR, and apoE3 is cleared by both.  相似文献   

7.
The role of the low density lipoprotein (LDL) receptor in the binding of chylomicron remnants to liver membranes and in their uptake by hepatocytes was assessed using a monospecific polyclonal antibody to the LDL receptor of the rat liver. The anti-LDL receptor antibody inhibited the binding and uptake of chylomicron remnants and LDL by the poorly differentiated rat hepatoma cell HTC 7288C as completely as did unlabeled lipoproteins. The antireceptor antibody, however, decreased binding of chylomicron remnants to liver membranes from normal rats by only about 10%. This was true for intact membranes and for solubilized reconstituted membranes and with both a crude membrane fraction as well as with purified sinusoidal membranes. Further, complete removal of the LDL receptor from solubilized membranes by immunoprecipitation with antireceptor antibody only decreased remnant binding to the reconstituted supernatant by 10% compared to solubilized, nonimmunoprecipitated membranes. Treatment of rats with ethinyl estradiol induced an increase in remnant binding by liver membranes. All of the increased binding could be inhibited by the antireceptor antibody. The LDL receptor-independent remnant binding site was not EDTA sensitive and was not affected by ethinyl estradiol treatment. LDL receptor-independent remnant binding was competed for by beta-VLDL = HDLc greater than rat LDL greater than human LDL (where VLDL is very low density lipoprotein, and HDL is high density lipoprotein). There was weak and incomplete competition by apoE-free HDL, probably due to removal of apoE from the remnant. The LDL receptor-independent remnant-binding site was also present in membranes prepared from isolated hepatocytes and had the same characteristics as the site on membranes prepared from whole liver. In contrast, when chylomicron remnants were incubated with a primary culture of rat hepatocytes, the anti-LDL receptor antibody prevented specific cell association by 84% and degradation of chylomicron remnants completely. Based on these studies, we conclude that although binding of chylomicron remnants to liver cell membranes is not dependent on the LDL receptor, their intact uptake by hepatocytes is.  相似文献   

8.
We have used adenovirus-mediated gene transfer in mice to investigate low density lipoprotein receptor (LDLR) and LDLR-related protein (LRP)-independent mechanisms that control the metabolism of chylomicron and very low density lipoprotein (VLDL) remnants in vivo. Overexpression of receptor-associated protein (RAP) in mice that lack both LRP and LDLR (MX1cre(+)LRP(flox/flox)LDLR(-/-)) in their livers elicited a marked hypertriglyceridemia in addition to the pre-existing hypercholesterolemia in these animals, resulting in a shift in the distribution of plasma lipids from LDL-sized lipoproteins to large VLDL-sized particles. This dramatic increase in plasma lipids was not due to a RAP-mediated inhibition of a unknown hepatic high affinity binding site involved in lipoprotein metabolism, because no RAP binding could be detected in livers of MX1cre(+)LRP(flox/flox)LDLR(-/-) mice using both membrane binding studies and ligand blotting experiments. Remarkably, RAP overexpression also resulted in a 7-fold increase (from 13.6 to 95.6 ng/ml) of circulating, but largely inactive, lipoprotein lipase (LPL). In contrast, plasma hepatic lipase levels and activity were unaffected. In vitro studies showed that RAP binds to LPL with high affinity (K(d) = 5 nM) but does not affect its catalytic activity, in vitro or in vivo. Our findings suggest that an extrahepatic RAP-sensitive process that is independent of the LDLR or LRP is involved in metabolism of triglyceride-rich lipoproteins. There, RAP may affect the functional maturation of LPL, thus causing the accumulation of triglyceride-rich lipoproteins in the circulation.  相似文献   

9.
The aim of this study was to determine the kinetic parameters of the hepatic uptake of VLDL remnant cholesteryl esters. Rat livers were perfused in situ with a broad range of remnant [3H]cholesteryl ester concentrations of known specific radioactivity. Following exactly 3 min of perfusion, hepatic lipids were extracted and labelled cholesteryl esters were separated by thin-layer chromatography and counted. The rate of cholesteryl ester uptake was a saturable process and the apparent kinetic parameters were determined from the Lineweaver-Burk plot of the data. Km and Vmax were calculated to be 72 microM and 35 nmol cholesteryl ester/min per g liver, respectively. For the purpose of comparison, we have expressed our kinetic parameters in terms of number of particles (Vmax = 0.022 nmol particles/min per g liver and Km = 45 nM) and compared our values with those obtained with chylomicron remnants by another group of investigators (Sherrill, B.C., Innerarity, T.L. and Mahley, R.W. (1980) J. Biol. Chem. 255, 1804-1807). We found that the maximal capacity for the removal of VLDL particles was similar to what was observed with rat chylomicron remnants. In contrast, the Km for the uptake process of VLDL remnant particles was approximately four times higher than that of rat chylomicron remnant particles. Our results are consistent with the hypothesis that hepatic removal of both chylomicron and VLDL remnants is mediated by the same receptor, but suggest that the affinity of VLDL remnants for the hepatic removal process is substantially lower, possibly due to structural differences between the two remnant particles.  相似文献   

10.
Rat ovarian granulosa rely heavily on lipoprotein-derived cholesterol for steroidogenesis, which is principally supplied by the LDL receptor- and scavenger receptor class B type I (SR-BI)-mediated pathways. In this study, we characterized the hormonal and cholesterol regulation of another member of the LDL receptor superfamily, low density lipoprotein receptor-related protein (LRP), and its role in granulosa cell steroidogenesis. Coincubation of cultured granulosa cells with LDL and N6,O2'-dibutyryl adenosine 3',5'-cyclic monophosphate (Bt2cAMP) greatly increased the mRNA/protein levels of LRP. Bt2cAMP and Bt2cAMP plus human hLDL also enhanced SR-BI mRNA levels. However, there was no change in the expression of receptor-associated protein, a chaperone for LRP, or another lipoprotein receptor, LRP8/apoER2, in response to Bt2cAMP plus hLDL, whereas the mRNA expression of LDL receptor was reduced significantly. The induced LRP was fully functional, mediating increased uptake of its ligand, alpha2-macroglobulin. The level of binding of another LRP ligand, chylomicron remnants, did not increase, although the extent of remnant degradation that could be attributed to the LRP doubled in cells with increased levels of LRP. The addition of lipoprotein-type LRP ligands such as chylomicron remnants and VLDL to the incubation medium significantly increased the progestin production under both basal and stimulated conditions. In summary, our studies demonstrate a role for LRP in lipoprotein-supported ovarian granulosa cell steroidogenesis.  相似文献   

11.
1. The hepatic metabolism of chylomicrons and chylomicron remnants was compared after adding approximately equal numbers of each lipoprotein particle to the perfusate of isolated livers. 2. At least 40% of the added remnants were metabolized by the liver compared with less than 3% for chylomicrons. 3. There was significantly more net removal of labelled remnants than of chylomicrons by the liver. 4. A greater proportion of labelled cholesterol than of labelled triacylglycerol fatty acids was transferred to the liver from each lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty acids of remnants were oxidized to CO2 more extensively than those of chylomicrons. 6. There was greater oxidation of remnant glycerolipic [(1(-14)C]oleate than of glycerolipid [1(-14)C]palmitate. 7. A large fraction of the fatty acids of remnants, but not of chylomicrons, was transferred to phospholipids, which were released by the liver in a lipoprotein of relative density less than 1.006. 8. Label from remnants, but not from chylomicrons, was found in lipoproteins of relative density greater than 1.006, which were not released during perfusion but could be flushed out from the liver at the end of perfusion.  相似文献   

12.
The regulation of the hepatic uptake of chylomicron remnants and very-low-density lipoprotein (VLDL) remnants was studied in the rat using a nonrecirculating liver perfusion system. The hepatic removal of remnant lipoproteins was shown to be by receptor-mediated processes since the concentration-dependent uptake was saturable and reductive methylation of the particles reduced the uptake of each lipoprotein by two-thirds. Treatment of liver donor rats with 17 alpha-ethinyl estradiol resulted in a 2-fold increase in the hepatic uptake of VLDL remnants, while cholesterol feeding of liver donor rats caused complete suppression of the receptor-mediated uptake of VLDL remnants. Chylomicron remnant removal was unaffected by estradiol administration and only slightly diminished by cholesterol feeding. The results of competition studies also indicated that a specific chylomicron remnant receptor exists in the liver. Apoprotein E was shown to be required for the receptor-mediated uptake of both remnant lipoproteins. Chylomicron remnants which contained no apoprotein E and VLDL remnants which contained reductively methylated apoprotein E were removed by the liver to about one-third of the extent of native particles. Thus the hepatic uptake of remnant lipoproteins occurs by receptor-mediated processes and the specific removal of both particles is mediated by apoprotein E. In addition, the uptake of VLDL remnants is regulated by the same factors that control hepatic low-density lipoprotein removal, while chylomicron remnant removal is unaffected by these factors.  相似文献   

13.
To gain a detailed understanding of those factors that govern the processing of dietary-derived lipoprotein remnants by macrophages we examined the uptake and degradation of rat triacylglycerol-rich chylomicron remnants and rat cholesterol-rich beta-very low density lipoprotein (beta-VLDL) by J774 cells and primary cultures of mouse peritoneal macrophages. The level of cell associated 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants reached a similar equilibrium level within 2 h of incubation at 37 degrees C. However, the degradation of 125I-labeled beta-VLDL was two to three times greater than the degradation of 125I-labeled chylomicron remnants at each time point examined, with rates of degradation of 161.0 +/- 36.0 and 60.1 +/- 6.6 ng degraded/h per mg cell protein, respectively. At similar extracellular concentrations of protein or cholesterol, the relative rate of cholesteryl ester hydrolysis from [3H]cholesteryl oleate/cholesteryl [14C]oleate-labeled chylomicron remnants was one-third to one-half that of similarly labeled beta-VLDL. The reduction in the relative rate of chylomicron remnant degradation by macrophages occurred in the absence of chylomicron remnant-induced alterations in low density lipoprotein (LDL) receptor recycling or in retroendocytosis of either 125I-labeled lipoprotein. The rate of internalization of 125I-labeled beta-VLDL by J774 cells was greater than that of 125I-labeled chylomicron remnants, with initial rates of internalization of 0.21 ng/min per mg cell protein for 125I-labeled chylomicron remnants and 0.39 ng/min per mg cell protein for 125I-labeled beta-VLDL. The degradation of 125I-labeled chylomicron remnants and 125I-labeled beta-VLDL was dependent on lysosomal enzyme activity: preincubation of macrophages with the lysosomotropic agent monensin reduced the degradation of both lipoproteins by greater than 90%. However, the pH-dependent rate of degradation of 125I-labeled chylomicron remnants by lysosomal enzymes isolated from J774 cells was 50% that of 125I-labeled beta-VLDL. The difference in degradation rates was dependent on the ratio of lipoprotein to lysosomal protein used and was greatest at ratios greater than 50. The degradation of 125I-labeled beta-VLDL by isolated lysosomes was reduced 30-40% by preincubation of beta-VLDL with 25-50 micrograms oleic acid/ml, suggesting that released free fatty acids could cause the slower degradation of chylomicron remnants. Thus, differences in the rate of uptake and degradation of remnant lipoproteins of different compositions by macrophages are determined by at least two factors: 1) differences in the rates of lipoprotein internalization and 2) differences in the rate of lysosomal degradation.  相似文献   

14.
The receptor-mediated uptake of rat hypercholesterolemic very low density lipoproteins (beta VLDL) and rat chylomicron remnants was studied in monolayer cultures of the J774 and P388D1 macrophage cell lines and in primary cultures of mouse peritoneal macrophages. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was reduced 80-90% in the presence of high concentrations of unlabeled human low density lipoproteins (LDL). Human acetyl-LDL did not significantly compete at any concentration tested. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was also competitively inhibited by specific polyclonal antibodies directed against the estrogen-induced LDL receptor of rat liver. Incubation in the presence of anti-LDL receptor IgG, but not nonimmune IgG, reduced specific uptake greater than 80%. Anti-LDL receptor IgG, 125I-beta VLDL, and 125I-chylomicron remnants bound to two protein components of apparent molecular weights 125,000 and 111,000 on nitrocellulose blots of detergent-solubilized macrophage membranes. Between 70-90% of 125I-lipoprotein binding was confined to the 125,000-Da peptide. Binding of 125I-beta VLDL and 125I-chylomicron remnants to these proteins was competitively inhibited by anti-LDL receptor antibodies. Comparison of anti-LDL receptor IgG immunoblot profiles of detergent-solubilized membranes from mouse macrophages, fibroblasts, and liver, and normal and estrogen-induced rat liver demonstrated that the immunoreactive LDL receptor of mouse cells is of a lower molecular weight than that of rat liver. Incubation of J774 cells with 1.0 micrograms of 25-hydroxycholesterol/ml plus 20 micrograms of cholesterol/ml for 48 h decreased 125I-beta VLDL uptake and immuno- and ligand blotting to the 125,000- and 111,000-Da peptides by only 25%. Taken together, these data demonstrate that uptake of beta VLDL and chylomicron remnants by macrophages is mediated by an LDL receptor that is immunologically related to the LDL receptor of rat liver.  相似文献   

15.
In this paper, human low-density lipoprotein (LDL), rat chylomicron remnants and very-low-density lipoproteins of beta-mobility from cholesterol-fed rabbits (beta VLDL) have been shown to bind strongly to a protein present in solubilised liver membranes of rats, rabbits and dogs by ligand blotting with biotin-modified lipoproteins. This binding protein was identified as the LDL-receptor on several criteria. First, binding of the lipoproteins to the receptor was saturable and Ca2+-dependent; secondly, the apparent relative molecular mass of the binding protein (ranging from 128,000 in the rabbit, 145,000 in the rat to 147,000 in the dog) was similar to that of the purified bovine LDL receptor. Finally, binding activity was greatly increased in the livers of rats treated with oestrogen in pharmacological doses and absent from the liver of Watanabe heritable hyperlipidaemic (WHHL) rabbits that have a genetic defect in the LDL receptor. Some binding was also observed to a high-molecular-mass protein present in solubilised liver membranes of rats and rabbits, which, in rabbits at least, shared antigenic determinants with rabbit apoB and was not likely to be related to the LDL receptor as it was present in equal amounts in normal and WHHL rabbits. No evidence was obtained for a specific chylomicron remnant binding protein, distinct from the LDL receptor, whose activity could be detected in solubilised liver membranes by ligand blotting although a variety of solubilisation and fractionation conditions were employed.  相似文献   

16.
The effects of exogenous apo E-3 and of cholesterol-enriched meals on the binding, cell association and proteolytic degradation of human chylomicrons and their remnants were determined in cultured human skin fibroblasts. Chylomicrons were prepared from plasma of normolipemic humans 4 h after a fat meal with normal or high cholesterol content. Remnants were obtained after incubation of chylomicrons with lipoprotein lipase in vitro. Cellular metabolism of chylomicrons was minimal, less than 10% that of LDL. Exogenous apo E-2 enhanced chylomicron metabolism by 3-4-fold. The cellular metabolism of remnants was 2.5-3.5-fold higher as compared to intact chylomicrons but their response to exogenous apo E-3 was considerably lower. The cellular metabolism of chylomicrons and chylomicron remnants obtained from subjects eating cholesterol-enriched fat meal was the highest either without or with added exogenous apo E-3. Yet, even in the preparation that exhibits the highest metabolic activity (apo E-3 enriched remnants from cholesterol-enriched meals) the absolute proteolytic degradation was about two-thirds that of LDL. We conclude that although LDL-receptors take up and degrade chylomicron remnants, the rate of catabolism of remnants by this route can not explain the rapid and complete remnant removal process as observed in vivo.  相似文献   

17.
The binding and internalization of (125)I-labelled chylomicron remnants derived from palm, olive, corn, or fish oil (rich in saturated, monounsaturated, n-6, or n-3 polyunsaturated fatty acids, respectively) by hepatocytes from rats fed a low-fat diet or a diet supplemented with the corresponding fat for 21 days was investigated. In hepatocytes from rats fed the low-fat diet, the association of radioactivity with the cells at 4 degrees C (a measure of initial binding only) was similar with all types of remnants tested, but was more rapid at 37 degrees C (a measure of binding plus internalization) when fish oil, as compared to olive, corn or palm oil remnants, was used, and similar differences in the internalization of the particles were observed. In contrast, when hepatocytes from rats fed the fat-supplemented diets were used, the rate of association at 37 degrees C of remnants with cells from rats fed palm, corn or fish oil was similar, and higher than that found with cells from animals fed olive oil, and in this case these differences were mainly due to changes in the binding of the particles to the cells at 4 degrees C. Both excess low-density lipoprotein (LDL), which inhibits remnant uptake by the LDL receptor, and lactoferrin, which blocks the LDL receptor-related protein (LRP), were found to decrease the association of the remnants with cells from rats fed the low-fat and high-fat diets. However, in hepatocytes from animals given the low-fat diet, most of the differences between the various types of particle were retained in the presence of lactoferrin, but abolished in the presence of LDL. In contrast, in cells from rats fed the high-fat diets, the differences were reduced by both lactoferrin and LDL. These findings demonstrate that the hepatic uptake of chylomicron remnants is influenced both by the fatty acid composition of the particles, and by longer-term adaptive changes in liver tissue, and suggest that the former effects are mediated mainly by the LDL receptor, while the latter may involve both the LDL receptor and the LRP.  相似文献   

18.
Characterization of the estrogen-induced lipoprotein receptor of rat liver   总被引:6,自引:0,他引:6  
The ethinyl estradiol-induced lipoprotein receptor of rat liver was purified and characterized. Liver membranes were prepared from ethinyl estradiol-treated rats, solubilized, and subjected to DEAE chromatography. A fraction with a high specific activity for low density lipoprotein (LDL) binding was isolated and used to immunize mice. Hybridomas were prepared from their spleen cells, and a clone that secreted an IgG antibody, which cross-reacted with an ethinyl estradiol-induced protein of the same molecular weight as the bovine adrenal LDL receptor, was expanded. This antibody, designated P1B3, immunoprecipitated the induced lipoprotein receptor. P1B3 was used to purify the receptor, and a polyclonal antibody was raised against the pure protein. This antibody recognized a protein of similar molecular weight in rat liver, adult dog liver, and human skin fibroblasts, thus demonstrating that the induced rat lipoprotein receptor was related to the LDL receptor of other species. This receptor is present in normal rat liver, and its content is reduced by feeding an atherogenic diet, but not by feeding a diet containing 0.5% cholesterol. Moreover, cholestyramine supplementation of the diet did not induce the receptor on liver membranes. The polyclonal antibody could prevent the binding of LDL to liver membranes from control or ethinyl estradiol-treated rats. It decreased chylomicron remnant binding to membranes from ethinyl estradiol-treated membranes, but did not affect chylomicron remnant binding to liver membranes of untreated rats, a result compatible with the existence of a distinct receptor for these latter particles. The amount of LDL receptor-independent, specific remnant binding was the same in both control and ethinyl estradiol-treated rats. This is consistent with the concept that the remnant receptor is not regulated by this treatment. Based on the above, we conclude that the ethinyl estradiol-induced lipoprotein receptor of rat liver is biochemically and immunologically similar to the LDL receptor of other species. It is present on the liver of normal adult rats and could account for LDL as well as beta VLDL and HDLc removal. Although it may contribute to chylomicron remnant removal, there appears to be a second unrelated receptor or process which recognizes this lipoprotein.  相似文献   

19.
To characterize chylomicron remnant clearance by the liver, plasma elimination of retinyl palmitate-labeled chylomicron remnants was studied in 18 healthy subjects, ages 21-42 years. Autologous plasma containing retinyl palmitate-labeled chylomicrons and their remnants was injected intravenously, and retinyl palmitate disappearance was measured in serial plasma samples in all subjects and in lipoprotein fractions in 11 subjects. The injected doses (n = 18) ranged from 0.34 to 7.11 mumol retinyl palmitate in d less than or equal to 1.006 g/ml particles with an average molar ratio of 330/1 of retinyl palmitate/apoB-48 (n = 8). The label distributed in the intravascular space and exhibited apparent first order elimination, monoexponential in 6 and biexponential in 12 subjects. The first rapid component k1 (t1/2 18.8 +/- 11.4 min, n = 18) was shown to represent retinyl palmitate in particles of d less than or equal to 1.006 g/ml, i.e., chylomicron remnants, and the second slow component k2 (t1/2 123 +/- 62 min, n = 12) small amounts of retinyl palmitate (11 +/- 7%) injected in d greater than 1.006 g/ml particles (therefore excluded from analysis). Assuming a single-compartment model, initial rates of elimination (= dose x k1) of labeled chylomicron remnants obeyed (P = 0.06) Michaelis-Menten saturation kinetics: Km was 921 +/- 305 nmol retinyl palmitate label and Vmax 124 +/- 14 nmol/min corresponding to 0.88 nM apoB-48 for Km and 0.25 x 10(-3) nmol apoB-48.min-1.g-1 liver for Vmax. Their elimination was limited neither by the injected triglyceride dose nor theoretically by the liver blood flow. After the intake of 70 g of fat (cream) containing retinyl palmitate, the plasma retinyl palmitate concentration exceeded the estimated saturation concentration for 7 h. In conclusion, physiological chylomicron remnant catabolism by the liver appears to be saturable by ordinary lipid intake in healthy humans.  相似文献   

20.
Chylomicron remnants (Sf greater than 100) were prepared by treating human chylomicrons (Sf greater than 400) with human post heparin plasma. Chylomicron remnants recovered after 70-80% of chylomicron triacylglycerol was hydrolyzed, suppressed LDL-receptor activity and increased cell cholesterol esterification to the same extent as did LDL when added to cultured human arterial smooth muscle cells at an equal cholesterol concentration. Cell cholesterol mass increased 36% after incubation with 25 micrograms LDL cholesterol/ml and 35% with 25 micrograms chylomicron-remnant cholesterol/ml. Addition of 30 microM chloroquine plus LDL or chylomicron remnants further increased cholesterol content of cells (74% and 87%, respectively) and caused a significant rise in cell esterified cholesterol (344% and 369%, respectively). Cholesterol content per unit of apolipoprotein B mass of remnants was 2-3-fold higher than that of LDL. Therefore, if lipoprotein particles were added at equivalent apolipoprotein B mass chylomicron remnants increased cell cholesterol content and cholesterol esterification and suppressed LDL receptor activity significantly more than did LDL. This suggests that an additional determinant, presumably apolipoprotein E, is important for receptor recognition of chylomicron remnants. These results may be relevant to the delivery of chylomicron-derived cholesterol to arterial cells proposed as a feature of atherogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号