共查询到20条相似文献,搜索用时 0 毫秒
1.
Webb GC Dey A Wang J Stein J Milewski M Steiner DF 《The Journal of biological chemistry》2004,279(30):31068-31075
The endoproteolytic processing of proproteins in the secretory pathway depends on the expression of selected members of a family of subtilisin-like endoproteases known as the prohormone convertases (PCs). The main PC family members expressed in mammalian neuroendocrine cells are PC2 and PC1/3. The differential processing of proglucagon in pancreatic alpha-cells and intestinal L cells leads to production of distinct hormonal products with opposing physiological effects from the same precursor. Here we describe the establishment and characterization of a novel alpha-cell line (alphaTC-DeltaPC2) derived from PC2 homozygous null animals. The alphaTC-DeltaPC2 cells are shown to be similar to the well characterized alphaTC1-6 cell line in both morphology and overall gene expression. However, the absence of PC2 activity in alphaTC-DeltaPC2 leads to a complete block in the production of mature glucagon. Surprisingly, alphaTC-DeltaPC2 cells are able to efficiently cleave the interdomain site in proglucagon (KR 70-71). Further analysis reveals that alphaTC-DeltaPC2 cells, unlike alphaTC1-6 cells, express low levels of PC1/3 that lead to the generation of glicentin as well as low amounts of oxyntomodulin, GLP-1, truncated GLP-1, and N-terminally extended GLP-2. We conclude that alphaTC-DeltaPC2 cells provide additional evidence for PC2 as the major convertase in alpha-cells leading to mature glucagon production and provide a robust model for further analysis of the mechanisms of proprotein processing by the prohormone convertases. 相似文献
2.
Berman Y Mzhavia N Polonskaia A Furuta M Steiner DF Pintar JE Devi LA 《Journal of neurochemistry》2000,75(4):1763-1770
Prodynorphin, a multifunctional precursor of several important opioid peptides, is expressed widely in the CNS. It is processed at specific single and paired basic sites to generate various biologically active products. Among the prohormone convertases (PCs), PC1 and PC2 are expressed widely in neuroendocrine tissues and have been proposed to be the major convertases involved in the biosynthesis of hormonal and neural peptides. In this study we have examined the physiological involvement of PC2 in the generation of dynorphin (Dyn) peptides in mice lacking active PC2 as a result of gene disruption. Enzymological and immunological assays were used to confirm the absence of active PC2 in these mice. The processing profiles of Dyn peptides extracted from brains of these mice reveal a complete lack of Dyn A-8 and a substantial reduction in the levels of Dyn A-17 and Dyn B-13. Thus, PC2 appears to be involved in monobasic processing, leading to the generation of Dyn A-8, Dyn A-17, and Dyn B-13 from prodynorphin under physiological conditions. Brains of heterozygous mice exhibit only half the PC2 activity of wild-type mice; however, the levels of Dyn peptides in these mice are similar to those of wild-type mice, suggesting that a 50% reduction in PC2 activity is not sufficient to significantly reduce prodynorphin processing. The disruption of the PC2 gene does not lead to compensatory up-regulation in the levels of other convertases with similar substrate specificity because we find no significant changes in the levels of PC1, PC5/PC6, or furin in these mice as compared with wild-type mice. Taken together, these results support a critical role for PC2 in the generation of Dyn peptides. 相似文献
3.
The neuroendocrine secretory protein chromogranin A (CgA) is a precursor for various biologically active peptides. Several single and paired basic residues are present within its primary amino acid sequence comprising cleavage sites for prohormone convertases. In this study, SH-SY5Y human neuroblastoma cells were stably transfected with the prohormone convertase PC2 to analyse the proteolytic processing of endogenous chromogranin A and, in particular, the formation of the chromogranin-A-derived peptide GE-25. Our analyses revealed a significant change in the pattern of proteolytic conversion of chromogranin A in cells expressing PC2. Mock-transfected control cells contained mainly the intact chromogranin A molecule and hardly any shorter products were found. On the other hand, PC2-transfected cells showed extensive processing of chromogranin A, resulting in significantly lower amounts of the intact precursor and especially high levels of the free peptide GE-25. 相似文献
4.
Prohormone convertases (PCs) 1 and 2 are the primary endoproteases involved in the post-translational processing of proThyrotropin Releasing Hormone (proTRH) to give rise to TRH and other proposed biologically active non-TRH peptides. Previous evidence suggests that PC1 is responsible for most proTRH cleavage events. Here, we used the PC1 and PC2 knockout (KO) mouse models to examine the effects of PC1 or PC2 loss on proTRH processing. The PC1KO mouse presented a decrease in five proTRH-derived peptides, whereas the PC2KO mouse showed only lesser reduction in three TRH (Gln-His-Pro), TRH-Gly (Gln-His-Pro-Gly), and the short forms preproTRH(178-184) (pFQ(7)) and preproTRH(186-199) (pSE(14)) of pFE(22) (preproTRH(178-199)). Also, PC1KO and not PC2KO showed a decrease in pEH(24) indicating that PC1 is more important in generating this peptide in the mouse, which differs from previous studies using rat proTRH. Furthermore, downstream effects on thyroid hormone levels were evident in PC1KO mice, but not PC2KO mice suggesting that PC1 plays the more critical role in producing bioactive hypophysiotropic TRH. Yet loss of PC1 did not abolish TRH entirely indicating a complementary action for both enzymes in the normal processing of proTRH. We also show that PC2 alone is responsible for catalyzing the conversion of pFE(22) to pFQ(7) and pSE(14), all peptides implicated in regulation of suckling-induced prolactin release. Collectively, results characterize the specific roles of PC1 and PC2 in proTRH processing in vivo. 相似文献
5.
6.
Muller L Cameron A Fortenberry Y Apletalina EV Lindberg I 《The Journal of biological chemistry》2000,275(50):39213-39222
The prohormone convertases (PCs) are synthesized as zymogens whose propeptides contain several multibasic sites. In this study, we investigated the processing of the PC2 propeptide and its function in the regulation of PC2 activity. By using purified pro-PC2 and directed mutagenesis, we found that the propeptide is first cleaved at the multibasic site separating it from the catalytic domain (primary cleavage site); the intact propeptide thus generated is then sequentially processed at two internal sites. Unlike the mechanism described for furin, our mutagenesis studies show that internal cleavage of the propeptide is not required for activation of pro-PC2. In addition, we identified a point mutation in the primary cleavage site that does not prevent the folding nor the processing of the zymogen but nevertheless results in the generation of an inactive PC2 species. These data suggest that the propeptide cleavage site is directly involved in the folding of the catalytic site. By using synthetic peptides, we found that a PC2 propeptide fragment inhibits PC2 activity, and we identified the inhibitory site as the peptide sequence containing basic residues at the extreme carboxyl terminus of the primary cleavage site. Finally, our study supplies information concerning the intracellular fate of a convertase propeptide by providing evidence that the PC2 propeptide is generated and is internally processed within the secretory granules. In agreement with this localization, an internally cleaved propeptide fragment could be released by stimulated secretion. 相似文献
7.
In addition to its role as a gut hormone, cholecystokinin (CCK) is a widespread and potent neurotransmitter. Its biosynthesis requires endoproteolytic cleavage of proCCK at several mono- and dibasic sites by subtilisin-like prohormone convertases (PCs). Of these, PC1 and PC2 are specific for neuroendocrine cells. We have now examined the role of PC2 and its binding protein, 7B2, in the neuronal processing of proCCK by measurement of precursor, processing-intermediates and bioactive end-products in brain extracts from PC2- and 7B2-null mice and from corresponding controls. PC2-null mice displayed a nine-fold increase of cerebral proCCK concentrations, and a two-fold increase in the concentrations of the processing-intermediate, glycine-extended CCK, whereas the concentrations of transmitter-active (i.e. alpha-amidated and O-sulfated) CCK peptides were reduced (61%). Chromatography showed that O-sulfated CCK-8 still is the predominant transmitter-active CCK in PC2-null brains, but that the fraction of intermediate-sized CCK-peptides (CCK-58, -33 and -22) was eight-fold increased. 7B2-null brains displayed a similar pattern but with less pronounced precursor accumulation. In contrast with the cerebral changes, PC2 deficiency was without effect on proCCK synthesis and processing in intestinal endocrine cells, whereas 7B2 deficiency halved the concentration of bioactive CCK in the intestine. The results show that PC2 plays a major neuron-specific role in the processing of proCCK. 相似文献
8.
Hwang JR Siekhaus DE Fuller RS Taghert PH Lindberg I 《The Journal of biological chemistry》2000,275(23):17886-17893
The prohormone convertases (PCs) are an evolutionarily ancient group of proteases required for the maturation of neuropeptide and peptide hormone precursors. In Drosophila melanogaster, the homolog of prohormone convertase 2, dPC2 (amontillado), is required for normal hatching behavior, and immunoblotting data indicate that flies express 80- and 75-kDa forms of this protein. Because mouse PC2 (mPC2) requires 7B2, a helper protein for productive maturation, we searched the fly data base for the 7B2 signature motif PPNPCP and identified an expressed sequence tag clone encoding the entire open reading frame for this protein. dPC2 and d7B2 cDNAs were subcloned into expression vectors for transfection into HEK-293 cells; mPC2 and rat 7B2 were used as controls. Although active mPC2 was detected in medium in the presence of either d7B2 or r7B2, dPC2 showed no proteolytic activity upon coexpression of either d7B2 or r7B2. Labeling experiments showed that dPC2 was synthesized but not secreted from HEK-293 cells. However, when dPC2 and either d7B2 or r7B2 were coexpressed in Drosophila S2 cells, abundant immunoreactive dPC2 was secreted into the medium, coincident with the appearance of PC2 activity. Expression and secretion of dPC2 enzyme activity thus appears to require insect cell-specific posttranslational processing events. The significant differences in the cell biology of the insect and mammalian enzymes, with 7B2 absolutely required for secretion of dPC2 and zymogen conversion occurring intracellularly in the case of dPC2 but not mPC2, support the idea that the Drosophila enzyme has specific requirements for maturation and secretion that can be met only in insect cells. 相似文献
9.
Previous studies using selectively modified pro-ocytocin/neurophysin substrate analogues and the purified metalloprotease, pro-ocytocin/neurophysin convertase (magnolysin; EC 3.4 24.62), have shown that dibasic cleavage site processing is associated with a prohormone sequence organized in a beta-turn structure. We have used various peptide analogues of the pro-ocytocin-neurophysin processing domain, and recombinant prohormone convertase 1/3, to test the validity of this property towards this member of the family of prohormone convertases (PCs). The enzymatic cleavage analysis and kinetics showed that: (a) with methyl amide (N-Met) modification, a secondary structure beta-turn breaker, the enzyme substrate interaction was abolished; (b) cleavage was favoured when the dibasic substrate side-chains were oriented in opposite directions; (c) the amino acid present at the P'1 position is important in the enzyme-substrate interaction; (d) the flexibility of the peptide substrate is necessary for the interaction; (e) Addition of dimethylsulfoxide to the cleavage assay favoured the cleavage of the pro-ocytocin/neurophysin large substrate over that of the smaller one pGlu-Arg-Thr-Lys-Arg-methyl coumarin amide. These data allowed us to conclude that proteolytic processing of pro-ocytocin-related peptide substrates by PC1/3 as well as by the metalloenzyme, magnolysin, involves selective recognition of precise cleavage site local secondary structure by the processing enzyme. It is hypothesized that this may represent a general property of peptide precursor proteolytic processing systems. 相似文献
10.
The multifunctional prohormone, proopiomelanocortin (POMC), is processed in the melanotrope cells of the pituitary pars intermedia at pairs of basic amino acid residues to give a number of peptides, including alpha-melanophore-stimulating hormone (alpha-MSH). This hormone causes skin darkening in amphibians during background adaptation. Here we report the complete structure of Xenopus laevis prohormone convertase PC2, the enzyme thought to be responsible for processing of POMC to alpha-MSH. A comparative structural analysis revealed an overall amino acid sequence identity of 85-87% between Xenopus PC2 and its mammalian counterparts, with the lowest degree of identity in the signal peptide sequence (28-36%) and the region amino-terminal to the catalytic domain (59-60%). The occurrence of a second, structurally different PC2 protein reflects the expression of two Xenopus PC2 genes. The expression pattern of PC2 in the Xenopus pituitary gland of black- and white-adapted animals was found to be similar to that of POMC, namely high expression in active melanotrope cells of black animals. This observation is in line with a physiological role for PC2 in processing POMC to alpha-MSH. 相似文献
11.
Pan H Nanno D Che FY Zhu X Salton SR Steiner DF Fricker LD Devi LA 《Biochemistry》2005,44(12):4939-4948
Prohormone convertase 1 (PC1; also known as PC3) is believed to be responsible for the processing of many neuropeptide precursors. To look at the role PC1 plays in neuropeptide processing in brain and pituitary, we used radioimmunoassays (RIA) as well as quantitative peptidomic methods and examined changes in the levels of multiple neuropeptide products in PC1 knockout (KO) mice. The processing of proenkephalin was impaired in PC1 KO mouse brains with a decrease in the level of Met-Enkephalin immunoreactivity (ir-Met-Enk) and an accumulation of higher molecular weight processing intermediates containing ir-Met-Enk. Processing of the neuropeptide precursor VGF was also affected in PC1 KO mouse brains with a decrease in the level of an endogenous 3 kDa C-terminal peptide. In contrast, the processing of proSAAS into PEN was not altered in PC1 KO mouse brains. Quantitative mass spectrometry was used to analyze a number of peptides derived from proopiomelanocortin (POMC), provasopressin, prooxytocin, chromogranin A, chromogranin B, and secretogranin II. Among them, the levels of oxytocin and peptides derived from chromogranin A and B dramatically decreased in the PC1 KO mouse pituitaries, while the levels of peptides derived from proopiomelanocortin and provasopressin did not show substantial changes. In conclusion, these results support the notion that PC1 plays a key role in the processing of multiple neuroendocrine peptide precursors and also reveal the presence of a redundant system in the processing of a number of physiologically important bioactive peptides. 相似文献
12.
PC2 is a member of the eukaryotic family of subtilisin-related proprotein convertases which are thought to be involved in the intracellular proteolytic processing of prohormones and proneuropeptides. The presence of only small amounts of PC2 in the secretory granules of certain mammalian neuroendocrine cell types has made the characterization and further study of this enzyme difficult. We report here the expression of proteolytically active human PC2 protein in the insect cell-baculovirus system. Human PC2 expressed in insect cells is a calcium-dependent intracellular protein active at neutral pH. In insect cells, human PC2 was found intracellularly as 75-kDa and 71-kDa proteins. Both 73-kDa and 68-kDa forms were found in the conditioned medium, but no PC2 proteolytic activity was detected. We demonstrated the presence of a soluble inhibitor in infected-cell medium which may block PC2 activity. 相似文献
13.
Toullec JY Kamech N Gallois D Maïbèche M Papon V Boscaméric M Soyez D 《Biochimica et biophysica acta》2002,1574(2):145-151
PC2 prohormone convertases are enzymes involved in the proteolytic maturation of neuropeptide precursors. In the present work, a cDNA encoding a PC2-like enzyme (OrlPC2) was cloned from crayfish eyestalk ganglia (medulla terminalis) containing the X-organ, a major neuroendocrine center. The predicted 634 amino acid preproprotein exhibits highest sequence identity, especially in the catalytic domain, with PC2s from arthropods and nematodes, and less with mollusc and vertebrate enzymes. It was demonstrated by in situ hybridization on crayfish medulla terminalis sections that OrlPC2 is expressed in a large number of neuron perikarya, including those producing the well known crustacean hyperglycemic hormone. 相似文献
14.
15.
Gastrin is initially synthesized as a large precursor that requires endoproteolytic cleavage by a prohormone convertase (PC) for bioactivation. Gastric antral G-cells process progastrin at Arg(94)Arg(95) and Lys(74)Lys(75) residues generating gastrin heptadecapeptide (G17-NH(2)). Conversely, duodenal G-cells process progastrin to gastrin tetratriacontapeptide (G34-NH(2)) with little processing at Lys(74)Lys(75). Both tissues express PC1/PC3 and PC2. Previously, we demonstrated that heterologous expression of progastrin in an endocrine cell line that expresses PC1/PC3 and little PC2 (AtT-20) resulted in the formation of G34-NH(2). To confirm that PC1/PC3 was responsible for progastrin processing in AtT-20 cells and capable of processing progastrin in vivo we coexpressed either human wild-type (Lys(74)Lys(75)) or mutant (Arg(74)Arg(75), Lys(74)Arg(75), and Arg(74)Lys(75)) progastrins in AtT-20 cells with two different antisense PC1/PC3 constructs. Coexpression of either antisense construct resulted in a consistent decrease in G34-NH(2) formation. Gastrin mRNA expression and progastrin synthesis were equivalent in each cell line. Although mutation of the Lys(74)Lys(75) site within G34-NH(2) to Lys(74)Arg(75) resulted in the production of primarily G17-NH(2) rather than G34-NH(2), inhibition of PC1/PC3 did not significantly inhibit processing at the Lys(74)Arg(75) site. We conclude that PC1/PC3 is a progastrin processing enzyme, suggesting a role for PC1/PC3 progastrin processing in G-cells. 相似文献
16.
Helwig M Lee SN Hwang JR Ozawa A Medrano JF Lindberg I 《The Journal of biological chemistry》2011,286(49):42504-42513
The small neuroendocrine protein 7B2 is required for the production of active prohormone convertase 2 (PC2), an enzyme involved in the synthesis of peptide hormones, such as glucagon and proopiomelanocortin-derived α-melanocyte-stimulating hormone. However, whether 7B2 can dynamically modulate peptide production through regulation of PC2 activity remains unclear. Infection of the pancreatic alpha cell line α-TC6 with 7B2-encoding adenovirus efficiently increased production of glucagon, whereas siRNA-mediated knockdown of 7B2 significantly decreased stored glucagon. Furthermore, rescue of 7B2 expression in primary pituitary cultures prepared from 7B2 null mice restored melanocyte-stimulating hormone production, substantiating the role of 7B2 as a regulatory factor in peptide biosynthesis. In anterior pituitary and pancreatic beta cell lines, however, overexpression of 7B2 affected neither production nor secretion of peptides despite increased release of active PC2. In direct contrast, 7B2 overexpression decreased the secretion and increased the activity of PC2 within α-TC6 cells; the increased intracellular concentration of active PC2 within these cells may therefore account for the enhanced production of glucagon. In line with these findings, we found elevated circulating glucagon levels in 7B2-overexpressing cast/cast mice in vivo. Surprisingly, when proopiomelanocortin and proglucagon were co-expressed in either pituitary or pancreatic alpha cell lines, proglucagon processing was preferentially decreased when 7B2 was knocked down. Taken together, these results suggest that proglucagon cleavage has a greater dependence on PC2 activity than other precursors and moreover that 7B2-dependent routing of PC2 to secretory granules is cell line-specific. The manipulation of 7B2 could therefore represent an effective way to selectively regulate synthesis of certain PC2-dependent peptides. 相似文献
17.
Biosynthesis of the prohormone convertase mPC1 in AtT-20 cells. 总被引:9,自引:0,他引:9
A new family of mammalian subtilisin-like enzymes, probably involved in the processing of proproteins in regulated and constitutive cells at paired basic residues, has recently been discovered. Little information exists as yet concerning the biosynthesis of these endogenous subtilisin-like enzymes. In the present work the biosynthesis and release of the endogenous prohormone convertase PC1 in AtT-20 cells were studied. As predicted from mRNA studies, AtT-20 cells contain high levels of PC1 protein. Through immunoblotting, 87-kilodalton (kDa) and 66-kDa bands were detected with an amino terminally directed antiserum; however, only the 87-kDa product was detected with carboxyl terminally directed antiserum, indicating carboxyl terminal truncation. Pulse-chase experiments, using [35S]methionine/cysteine, showed that after 20 min pulse the main product in the cells was the 87-kDa protein. Cells chased for varying amounts of time exhibited a progressive increase in the intensity of a 66-kDa band, along with a corresponding decrease of the 87-kDa band. The 87-66 kDa conversion was nearly complete after 4 h of chase. This posttranslational processing was inhibited by the ionophore monensin, a Golgi disruptor, with a corresponding accumulation of the 87-kDa protein within the cell. Both the 87 kDa- and 66 kDa-labeled proteins were detected as membrane-bound rather than soluble proteins. The 87-kDa protein was the main product secreted by nonstimulated AtT-20 cells, while the 66-kDa product was only released when the cells were stimulated with CRF or BaCl2 and Bromo-cAMP.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
19.
We have purified the mouse prohormone convertase 1 (PC1) pro-domain expressed in Escherichia coli cells and demonstrated, using a number of biophysical methods, that this domain is an independent folding unit with a T(m) of 39 degrees C at a protein concentration of 20 microM and pH 7.0. This differs significantly from similar pro-domains in bacteria and human furin, which are unfolded at 25 degrees C and require the catalytic domain in order to be structured [Bryan et al. (1995) Biochemistry 34, 10310-10318; Bhattacharjya et al. (2000) J. Biomol. NMR 16, 275-276]. Using heteronuclear NMR spectroscopy, we have determined the backbone (1)H, (13)C, and (15)N assignments for the pro-domain of PC1. On the basis of (1)H/(13)C chemical shift indices, NOE analysis, and hydrogen exchange measurements, the pro-domain is shown to consist of a four-stranded beta-sheet and two alpha-helices. The results presented here show that both the bacterial pro-domain in complex with subtilisin and the uncomplexed mouse PC1 pro-domain have very similar overall folds despite a lack of sequence homology. The structural data help to explain the location of the secondary processing sites in the pro-domains of the PC family, and a consensus sequence for binding to the catalytic domain is proposed. 相似文献
20.
Beinfeld MC Blum A Vishnuvardhan D Fanous S Marchand JE 《The Journal of biological chemistry》2005,280(46):38410-38415
Prohormone convertase 2 is widely co-localized with cholecystokinin in rodent brain. To examine its role in cholecystokinin processing, cholecystokinin levels were measured in dissected brain regions from prohormone convertase 2 knock-out mice. Cholecystokinin levels were lower in hippocampus, septum, thalamus, mesencephalon, and pons in knock-out mice than wild-type mice. In cerebral cortex, cortex-related structures and olfactory bulb, cholecystokinin levels were higher than wild type. Female mice were more affected by the loss of prohormone convertase 2 than male mice. The decrease in cholecystokinin levels in these brain regions shows that prohormone convertase 2 is important for cholecystokinin processing. Quantitative polymerase chain reaction measurements were performed to examine the relationship between peptide levels and cholecystokinin and enzyme expression. They revealed that cholecystokinin and prohormone convertase 1 mRNA levels in cerebral cortex and olfactory bulb were actually lower in knock-out than wild type, whereas their expression in other brain regions of knock-out mouse brain was the same as wild type. Female mice frequently had higher expression of cholecystokinin and prohormone convertase 1, 2, and 5 mRNA than male mice. The loss of prohormone convertase 2 alters CCK processing in specific brain regions. This loss also appears to trigger compensatory mechanisms in cerebral cortex and olfactory bulb that produce elevated levels of cholecystokinin but do not involve increased expression of cholecystokinin, prohormone convertase 1 or 5 mRNA. 相似文献