首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cultured immature panicles of rice formed plantlets from spikelets without callus or embryoid formation on MS and HE media containing 2 mg/l each of NAA and kinetin. Developmental stage, ploidy of explant and plant growth regulators in the medium are the major factors affecting the frequency of spikelet budding in young panicle culture. It is suggested that spikelet budding occurs by the reversion of floral primordia to vegetative stage or by the formation of adventitious buds from epidermal cells.  相似文献   

3.
Arabidopsis thaliana (L.) Heynh. has been used as a model system to investigate the regulatory genes that control and coordinate the determination, differentiation and morphogenesis of the floral meristem and floral organs. We show here that benzylaminopurine (BAP), a cytokinin, influences flower development inArabidopsis and induces partial phenocopies of known floral homeotic mutants. Application of BAP to wild-type inflorescences at three developmental stages results in: (i) increase in floral organ number; (ii) formation of abnormal floral organs and (iii) induction of secondary floral buds in the axils of sepals. These abnormalities resemble the phenotypes of mutants,clv1 (increase in organ number),ap1,ap2,ap3 (abnormal floral organs) andap1 (secondary floral buds in the axils of first-whorl organs). In addition, BAP induces secondary floral buds in the axils of perianth members ofapt2-6, ap3-1 andag mutants, and accentuates the phenotype of theapt2-1 mutant to resemble theapt2-6 mutant. These observations suggest that exogenous BAP suppresses the normal functioning of the genes for floral meristem identity and thereby affects flower development and the later stages of floral organ differentiation.Abbreviations BAP N6-benzylaminopurine - CK cytokinin  相似文献   

4.
5.
Sather DN  York A  Pobursky KJ  Golenberg EM 《Planta》2005,222(2):284-292
Development in dioecious cultivated spinach, Spinacia oleracea, is distinguished by the absence of alternative reproductive organ primordia in male and female flowers. Given the highly derived floral developmental program in spinach, we wished to characterize a spinach C class floral identity gene and to determine the patterns of sequence evolution as well as compare the spatial and temporal expression patterns with those of AGAMOUS. The isolated cDNA sequence clusters phylogenetically within the AGAMOUS/FARINELLI C class clade. In comparison with the SLM1 sequence from the related Silene latifolia, amino acid replacements are highly conservative and non-randomly distributed, being predominantly found in hinge regions or on exposed surfaces of helices. The spinach gene (SpAGAMOUS) appears to be exclusively expressed in reproductive tissues and not in vegetative organs. Initial expression of SpAGAMOUS is similar in male and female floral primordia. However, upon initiation of the first whorl organs, SpAGAMOUS becomes restricted to meristemic regions from which the reproductive primordia will develop. This results in an early gender-specific pattern. Thus, the spinach C class gene is differentially expressed prior to reproductive organ development and is, at least, correlated with, if not directly involved in, the sexual dimorphism in spinach.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
7.
以弯齿盾果草不同发育时期的花芽为材料,在体视显微镜解剖观察的基础上使用扫描电镜对弯齿盾果草花序、花及果实的发育过程进行了观察。结果显示:(1)弯齿盾果草的花序是由最初的一个球形花序原基经过多次分裂形成的,且花序发生式样符合蝎尾状聚伞花序结构,而非通常所描述的镰状或螺状聚伞花序;花序发生过程中无单一主轴,花序轴是由侧枝连接而成,每一朵花原基有其对应的1枚苞片,下一花原基是从相邻的上一枚苞腋里发生,相邻两花原基交错互生。(2)花器官的发生是按照花萼原基、花冠原基、雄蕊原基和雌蕊原基的顺序发育,但雄蕊原基的花药部分发育速度要比花冠原基快,所以花器官的发育是按照花萼、雄蕊、花冠和雌蕊的顺序发育。(3)子房四深裂结构是由4个原基分别发育,而后相互靠拢而成。(4)小坚果表面的附属结构发生于子房发育后期,其背面的内外层突起分别是由生长较快的外部组织的边缘通过上部内缩和下部向外环状生长形成。  相似文献   

8.
Recent studies have shown that molecular control of inner floral organ identity appears to be largely conserved between monocots and dicots, but little is known regarding the molecular mechanism underlying development of the monocot outer floral organ, a unique floral structure in grasses. In this study, we report the cloning of the rice EXTRA GLUME1 ( EG1 ) gene, a putative lipase gene that specifies empty-glume fate and floral meristem determinacy. In addition to affecting the identity and number of empty glumes, mutations in EG1 caused ectopic floral organs to be formed at each organ whorl or in extra ectopic whorls. Iterative glume-like structures or new floral organ primordia were formed in the presumptive region of the carpel, resulting in an indeterminate floral meristem. EG1 is expressed strongly in inflorescence primordia and weakly in developing floral primordia. We also found that the floral meristem and organ identity gene OsLHS1 showed altered expression with respect to both pattern and levels in the eg1 mutant, and is probably responsible for the pleiotropic floral defects in eg1 . As a putative class III lipase that functionally differs from any known plant lipase, EG1 reveals a novel pathway that regulates rice empty-glume fate and spikelet development.  相似文献   

9.
罗敏蓉 《广西植物》2020,40(11):1645-1652
花的发生和发育过程研究可以发现早期进化的轨迹,为系统发育的研究提供重要线索。蓝堇草属(Leptopyrum)为毛茛科唐松草亚科一单种属,仅包含蓝堇草一种,其花的发生和发育过程仍为空白。为了深入理解唐松草亚科乃至毛茛科花发育多样性和演化规律,该文运用扫描电子显微镜(SEM)观察了蓝堇草各轮花器官的形态发生和发育过程。结果表明:该属植物所有的萼片、花瓣、雄蕊和雌蕊均为螺旋状发生,花器官排列式样也为螺旋状; 5枚萼片原基宽阔,5枚花瓣原基圆球形、位于萼片原基的间隔,且在后期表现为延迟发育现象,雄蕊原基较小、为圆球形;花瓣原基和雄蕊原基连续发生,无明显的时空间隔,但与萼片原基有时空间隔;心皮原基为马蹄形对折,柱头组织由单细胞乳突组成;胚珠倒生、具单珠被。该属花器官螺旋状排列、胚珠具单珠被在唐松草亚科中是独有的性状,花发育形态学证据支持了该属的特殊性。  相似文献   

10.
Floral organ identity and specific number directly affect anthesis habits, fertilization and grain yield. Here, we identified a deformed interior floral organ 1 (difo1) mutant from selfing progenies of indica cv. Zhonghui8015 (Zh8015) after 60Co γ-ray treatment. Compared with the Zh8015 spikelet, the interior floral organs of the difo1 mutant present various numbers of stamens and stigmas, with no typical filament and no mature pollen grains. Most difo1 flowers exhibited an increased number of stigmas that were attached to the stamens and an intumescent ovule-like cell mass in addition to the ovary. Transverse sections of spikelets and scanning electron microscopy analysis revealed an indeterminate number of interior floral organs and abnormal early spikelet development for the difo1 mutant. Instead of the linear-shaped surface of wild-type stamens, difo1 displayed a glossy stamen surface resulting in immature stamens and complete sterility. In addition, the difo1 mutant exhibited delayed anthesis, rapid anthesis and non-extended stamens compared with wild type. Genetic analysis and gene mapping revealed that difo1 was controlled by a single recessive gene, which was fine-mapped to a 54-kb interval on the short arm of chromosome 4 between markers S22 and RM16439 harboring nine ORFs. Sequence analysis revealed that the mutant carried a single nucleotide deletion in its promoter region, which likely corresponded to the phenotype, in a C2H2-type zinc finger protein gene (LOC_Os04g08600). Moreover, qRT-PCR analysis showed a significantly down-regulated expression pattern for DIFO1 and many floral organ identity genes in the interior floral organs of difo1. DIFO1 is therefore an important floral organ development gene in rice, particularly with regard to interior organ meristem identity and floret primordium differentiation.  相似文献   

11.
12.
Hepworth SR  Klenz JE  Haughn GW 《Planta》2006,223(4):769-778
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.  相似文献   

13.
To unravel gene expression patterns during rice inflorescence development, particularly at early stages of panicle and floral organ specification, we have characterized random cloned cDNAs from developmental-stage-specific libraries. cDNA libraries were constructed from rice panicles at the stage of branching and flower primordia specification or from panicles undergoing floral organogenesis. Partial sequence analysis and expression patterns of some of these random cDNA clones from these two rice panicle libraries are presented. Sequence comparisons with known DNA sequences in databases reveal that approximately sixtyeight per cent of these expressed rice genes show varying degrees of similarity to genes in other species with assigned functions. In contrast, thirtytwo per cent represent uncharacterized genes. cDNAs reported here code for potential rice homologues of housekeeping molecules, regulators of gene expression, and signal transduction molecules. They comprise both single-copy and multicopy genes, and genes expressed differentially, both spatially and temporally, during rice plant development. New rice cDNAs requiring specific mention are those with similarity toCOP1, a regulator of photomorphogenesis inArabidopsis; sequence-specific DNA binding plant proteins like AP2-domain-containing factors; genes that specify positional information in shoot meristems like leucine-rich-repeat-containing receptor kinases; regulators of chromatin structure like Polycomb domain protein; and also proteins induced by abiotic stresses.  相似文献   

14.
15.
魏景  彭冶  杨立梅 《西北植物学报》2021,41(12):2072-2079
为探究垂丝海棠重瓣花成花原因,该研究以单瓣垂丝海棠和重瓣垂丝海棠为实验材料,应用体式显微镜和扫描电镜观察垂丝海棠单瓣、重瓣品种花器官分化过程;解剖观察重瓣垂丝海棠大蕾期的花与盛开的花,统计其花器官的形态与数目;应用R语言对重瓣垂丝海棠的花瓣数目与其余各轮花器官数目进行相关性分析。结果显示:(1)单瓣和重瓣垂丝海棠的花器官分化均分为萼片原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期,且各轮花器官按照向心顺序依次分化发育。(2)在花瓣原基分化期,单瓣垂丝海棠仅分化出一轮(5枚)均匀分布于两枚萼片交汇处的花瓣原基,而重瓣垂丝海棠分化出两轮分布散列的花瓣原基,第一轮为5~7枚,第二轮为7~10枚。(3)在重瓣垂丝海棠各轮花器官中存在较多萼片瓣化、雄蕊瓣化、雌雄蕊异常发育的情况。(4)重瓣垂丝海棠各轮花器官数目间相关性分析结果显示,其花瓣数目与雄蕊数目以及瓣化中的雄蕊数目间存在明显的正相关关系,该现象与常规雄蕊瓣化植物表现的雄蕊数目减少、花瓣数目增多的现象不同。研究表明,重瓣垂丝海棠花瓣数目的增多并不完全依赖于雄蕊变瓣,暗示垂丝海棠重瓣花成花原因的多元性与复杂性。  相似文献   

16.
Recent studies have shown that F‐box proteins constitute a large family in eukaryotes, and play pivotal roles in regulating various developmental processes in plants. However, their functions in monocots are still obscure. In this study, we characterized a recessive mutant dwarf and deformed flower 1‐1 (ddf1‐1) in Oryza sativa (rice). The mutant is abnormal in both vegetative and reproductive development, with significant size reduction in all organs except the spikelet. DDF1 controls organ size by regulating both cell division and cell expansion. In the ddf1‐1 spikelet, the specification of floral organs in whorls 2 and 3 is altered, with most lodicules and stamens being transformed into glume‐like organs and pistil‐like organs, respectively, but the specification of lemma/palea and pistil in whorls 1 and 4 is not affected. DDF1 encodes an F‐box protein anchored in the nucleolus, and is expressed in almost all vegetative and reproductive tissues. Consistent with the mutant floral phenotype, DDF1 positively regulates B‐class genes OsMADS4 and OsMADS16, and negatively regulates pistil specification gene DL. In addition, DDF1 also negatively regulates the Arabidopsis LFY ortholog APO2, implying a functional connection between DDF1 and APO2. Collectively, these results revealed that DDF1, as a newly identified F‐box gene, is a crucial genetic factor with pleiotropic functions for both vegetative growth and floral organ specification in rice. These findings provide additional insights into the molecular mechanism controlling monocot vegetative and reproductive development.  相似文献   

17.
Mutations associated with floral organ number in rice   总被引:14,自引:0,他引:14  
How floral organ number is specified is an interesting subject and has been intensively studied in Arabidopsis thaliana. In rice (Oryza sativa L.), mutations associated with floral organ number have been identified. In three mutants of rice, floral organ number 1 (fon1) and the two alleles, floral organ number 2-1 (fon2-1) and floral organ number 2-2 (fon2-2), the floral organs were increased in number centripetally. Lodicules, homologous to petals, were rarely affected, and stamens were frequently increased from six to seven or eight. Of all the floral organs the number of pistils was the most frequently increased. Among the mutants, fon1 showed a different spectrum of organ number from fon2 -1 and fon2 -2. Lodicules were the most frequently affected in fon1, but pistils of more than half of fon1 flowers were unaffected; in contrast, the pistils of most flowers were increased in fon2 -1 and fon2-2. Homeotic conversion of organ identity was also detected at a low frequency in ectopically formed lodicules and stamens. Lodicules and stamens were partially converted into anthers and stigmas, respectively. Concomitant with the increased number of floral organs, each mutant had an enlarged apical meristem. Although meristem size was comparable among the three mutants and wild type in the early phase of flower development, a significant difference became apparent after the lemma primordium had differentiated. In these mutants, the size of the shoot apical meristem in the embryo and in the vegetative phase was not affected, and no phenotypic abnormalities were detected. These results do not coincide with those for Arabidopsis in which clavatal affects the sizes of both shoot and floral meristems, leading to abnormal phyllotaxis, inflorescence fasciation and increased floral organs. Accordingly, it is considered that FON1 and FON2 function exclusively in the regulation of the floral meristem, not of the vegetative meristem.Abbreviation DIC differential interference contrast This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.  相似文献   

18.
Su W  Lin C  Wu J  Li K  He G  Qian X  Wei C  Yang J 《Biotechnology letters》2006,28(12):923-927
The ATP-dependent Lon protease is a highly conserved enzyme that is present in archeae, eubacteria, and eukaryotes, and plays an important role in intracellular protein degradation. We have isolated a Lon protease gene, OsLon1, from Oryza sativa. The cDNA contained a 2,655 bp ORF. Comparative analysis showed that OsLon1 shared significant similarity with the previously reported Lon proteases from maize, Arabidopsis, human, and bacteria. Tissue expression pattern analysis revealed that OsLon1 was highly expressed in young leaves, mature leaves, and leaf sheaths but only weakly in young roots, mature roots, and young panicles. The OsLon1 gene was successfully expressed in E. coli and the detected protein size, about 120 kDa, matched the expected molecular mass of the His-tagged OsLon1 protein.  相似文献   

19.
C A Weiss  H Huang    H Ma 《The Plant cell》1993,5(11):1513-1528
Heterotrimeric GTP binding proteins (G proteins) are important signal transducers in lower eukaryotes and in animal cells. In plants, the occurrence of GTP binding proteins has been reported, but their biological function remains unclear. Two genes coding for G protein alpha subunits have been cloned: GPA1 in Arabidopsis and TGA1 in tomato. To gain some insights into the function of GPA1, we describe an extensive immunolocalization of GPalpha1, the gene product of GPA1, during Arabidopsis development. Our results show that the GPalpha1 is present through all stages of development and in all organs examined, with the exception of mature seeds. It is expressed in roots, floral stem, rosette leaves, cauline leaves, flowers, and seed pods. Interestingly, the level of GPalpha1 protein is higher in immature organs than in mature organs. GPalpha1 is present at a high level in the root meristem and elongation zone, in the shoot and floral meristems, and in the leaf primordium and floral organ (sepal, petal, stamen, and gynoecium) primordia. During flower development, dividing microspores, but not mature pollen, show high levels of GPalpha1. During pollination, GPalpha1 is present in the growing pollen tubes. The protein is also present in nectaries and developing ovules and, after fertilization, in developing embryos. In mature tissue, GPalpha1 is preferentially found in the vascular system but is also present in other cell types. The complexity of the GPalpha1 localization pattern suggests that GPalpha1 might be involved in different signaling pathways depending on the developmental stage.  相似文献   

20.
The production of additional floral organs by the inflorescenceof Helianthus annuus as a boron deficiency symptom was examinedand found to be related to the occurrence of minute splits inthe receptacle of the young capitulum. Wounding the receptacleby puncturing or cutting at an early stage when the receptacledome was forming (floral stage 3) or later when the receptaclehad either become saucer-shaped (floral stage 4) or the firstrows of disc floret primordia were appearing on the rim of thereceptacle (floral stage 5) resulted in the initiation of involucralbracts, ray and disc florets in the wound area, reproducingthe symptoms of boron deficiency. When the receptacle was woundedat later floral stages, when the receptacle was partially orwholly covered by disc floret primordia, involucral bracts andray florets were not formed in the proximity of the wound, leadingto the conclusion that the commitment of floral organ primordiabegins at the time of their initiation. The inductive effectsof wounding could not be reproduced by indoleacetic acid, naphthaleneaceticacid or benzyladenine applied to the receptacle surface in lanolinepaste. The results are related to the normal development ofthe sunflower inflorescence and it is concluded that the firstfloral organ primordia that appear in floral stage 3 and developinto involucral bracts during floral stage 4 may determine thepositions of subsequent primordia and establish the radial symmetryof the inflorescence. 1 Supported by a grant from the Australian Research Grants Scheme. (Received August 10, 1982; Accepted October 12, 1982)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号