共查询到20条相似文献,搜索用时 0 毫秒
1.
When investigating microscopic preparations perfusion chambers allow exchange and regulation of different solutions and ensure their constant flow in the sample chamber. Temperature deviations, however, may be problematic. We describe a new chamber that contains an additional circulation system which regulates the inside temperature using an external thermostat. An integrated thermometer probe records the sample temperature, which appears on a monitor. The glass chamber. measuring 75 × 35 × 3 mm, provides good optical quality and is compatible with every type of microscope. 相似文献
2.
O2 uptake rates of animal cells (Chinese hamster ovary-CHO) were measured in 96-well microtiter plates by integrating with fluorescent sensors thereby measuring fluorescence intensity ratios of an O2-sensitive and an insensitive fluorophor. O2 consumption rate was estimated from measured dissolved O2 and from O2 mass transfer coefficient determined in advance. Specific uptake decreased with time from 3.2 x 10(-13) mol O2 cell(-1) h(-1) at 15 h cultivation to 1.8 x 10(-13) mol O2 cell(-1) h(-1) at 48 h. Specific O2 uptake was also determined by sampling from a spinner-flask culture giving identical values. A cell viability assay for cultures based on O2 measurements is described in which cells are incubated outside the fluorescence reader and then the dissolved O2 is measured only once at a fixed time after the start of incubation. This protocol can be directly applied for high-throughput measurements. 相似文献
3.
Expression of the human chondrocyte phenotype in vitro 总被引:9,自引:0,他引:9
Amy Lynn Aulthouse Michael Beck Edward Griffey Julie Sanford Karen Arden Mirta A. Machado William A. Horton 《In vitro cellular & developmental biology. Plant》1989,25(7):659-668
Summary We report a culture scheme in which human epiphyseal chondrocytes lose their differentiated phenotype in monolayer and subsequently
reexpress the phenotype in an agarose gel. The scheme is based on a method using rabbit chondrocytes. Culture in monolayer
allowed small quantities of cells to be amplified and provided a starting point to study expression of the differentiated
human chondrocyte phenotype. The cells cultured in monolayer produced type I procollagen, fibronectin, and small noncartilaginous
proteoglycans. Subsequent culture in agarose was associated with the acquisition of typical chondrocyte ultrastructural features
and the synthesis of type II collagen and cartilage-specific proteoglycans. The switch from the nonchondrocyte to the differented
chondrocyte phenotype occurred under these conditions between 1 and 2 wk of agarose culture and was not necessarily homogeneous
throughout a culture. This culture technique will facilitate direct investigation of human disorders of cartilage that have
been addressed in the past by alternative approaches.
This research is supported in part by research grants from the National Institutes of Health, (HD 20691) Bethesda, MD, and
Shriners of North America (15953). 相似文献
4.
In a typical submerged aerobic fermentation with microbial pellets, the effective diffusivity of oxygen in the pellets is probably the most important, yet most difficult transport property to characterize experimentally. Its values directly indicate the efficiency or deficiency of oxygen to individual cells, and thus the biological activity of the microorganisms. In the past, it was not possible to assess reliably the effective diffusivity of oxygen in pellets due to several reasons. Firstly, most oxygen electrodes available were coarse, and hence not suitable for in situ measurements. Secondly, there was a lack of methods rigorous enough to characterize the structure of the microbial pellets. A state-of-the-art review of the literature relating to the feature subject is presented. Emphasis is laid upon development and evolution of the means for quantitative characterization of the effective diffusivity of oxygen in microbial pellets. 相似文献
5.
半边结灌注培养中杂交瘤细胞的生长和代谢 总被引:1,自引:0,他引:1
考察了半连续灌注培养中WuT3杂交瘤细胞在不同灌注速率下细胞生长的动态变化,培养其中主要基质的消耗和代谢物的生成。当灌注速率D从1.0/升高到2.0/d升高到2.0/d时,乳酸得率系数Ylac/glu降低18%,氨得率系数Yamm/gln降低40%,丙氨酸得率系数Yala/gln升高58%,甘氨酸得率系数Ygly/gln基本恒定。说明在灌注速率升高的条件下,细胞会调整代谢机制,丙酮酸和过量的谷氨酸 相似文献
6.
The metabolic pattern and cell culture kinetics of high-cell-density perfusion cultures were compared under two different oxygen transfer conditions: oxygen limiting and not limiting. When oxygen was a limiting factor during perfusion culture, both specific glucose uptake and lactate production rates increased, compared to non-oxygen-limited condition, by about 60% and 30%, respectively. The specific glutamine uptake rate under oxygen-limited conditions was almost 4.0 times higher than that under non-oxygen-limited conditions. The activity of lactate dehydrogenase (LDH) released into the medium by the dead cells can be used as an indicator for the metabolic and physiological conditions related to oxygen limitation. There was a 3.2 times higher specific rate of LDH activity released by dead cells in oxygen-limited cultures than those in non-oxygen-limited cultures. The specific production rate of monoclonal antibody was not significantly affected by the oxygen transfer conditions during the rapid cell growth period, but it rapidly increased toward the end of perfusion cultures. The higher perfusion rate may have limited further cell growth during high-cell-density perfusion culture, because cell damage was caused by the hydrodynamic shear within a hollow fiber microfiltration cartridge installed to withdraw the spent medium and the waste metabolites. (c) 1993 John Wiley & Sons, Inc. 相似文献
7.
Continuous, real-time monitoring of the oxygen uptake rate (OUR) in animal cell bioreactors 总被引:1,自引:0,他引:1
A new method for real-time monitoring of the oxygen uptake rate (OUR) in bioreactors, based on dissolved oxygen (DO) measurement at two points, has been developed and tested extensively. The method has several distinct advantages over known techniques.It enables the continuous and undisturbed monitoring of OUR, which is conventionally impossible without gas analyzers. The technique does not require knowledge of k(L)a. It provides smooth, robust, and reliable signal. The monitoring scheme is applicable to both microbial and mammalian cell bioprocesses of laboratory or industrial scale. The method was successfully used in the cultivation of NSO-derived murine myeloma cell line producing monoclonal antibody. It was found that while the OUR increased with the cell density, the specific OUR decreased to approximately one-half at cell concentrations of 16 x 10(6) cells/mL, indicating gradual reduction of cell respiration activity. Apart from the laboratory scale cultivation, the method was applied to industrial scale perfusion culture, as well as to processes using other cell lines. (c) 1994 John Wiley & Sons, Inc. 相似文献
8.
Ottanà R Maccari R Ciurleo R Vigorita MG Panico AM Cardile V Garufi F Ronsisvalle S 《Bioorganic & medicinal chemistry》2007,15(24):7618-7625
5-Arylidene-3-hydroxyalkyl-2-phenylimino-4-thiazolidinones (7,8) were synthesized and evaluated for their antidegenerative activity on human chondrocyte cultures stimulated by IL-1β. This in vitro model has proven to be a useful experimental model to reproduce the mechanisms involved in arthritic diseases. The cell viability, the amount of GAGs, the production of NO and PGE2 and the inhibition of MMP-3 were measured. Several thiazolidinones 7 and 8 exhibited the ability to block the production or action of the degenerative factors induced by IL-1β. 相似文献
9.
Perfusion seed cultures improve biopharmaceutical fed‐batch production capacity and product quality
下载免费PDF全文

William C. Yang Jiuyi Lu Chris Kwiatkowski Hang Yuan Rashmi Kshirsagar Thomas Ryll Yao‐Ming Huang 《Biotechnology progress》2014,30(3):616-625
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014 相似文献
10.
Kinetics of chondrocyte growth in cell-polymer implants 总被引:2,自引:0,他引:2
Freed LE Marquis JC Langer R Vunjak-Novakovic G 《Biotechnology and bioengineering》1994,43(7):597-604
In vitro cultivation of cartilage cells (chondrocytes) on biodegradable polyglycolic acid (PGA) scaffolds resulted in implants which could potentially be used to repair damaged joint cartilage or for reconstructive surgery. Cell growth kinetics were studied to define conditions under which the cellularity of implants made from isolated calf chondrocytes reached that of the parent calf cartilage. In static cultures, condrocyte growth rates decreased as either implant thickness or implant cell density increased. Over 4 weeks of cultivation, implant permeability to glucose decreased to 3% that of the plain polymer scaffold; this effect was attributed to the decrease in effective implant porosity associated with cartilage tissue regeneration.In a well-mixed culture, implants 1 cm in diameter by 0.3 cm thick maintained high cell growth rates over 7 weeks and hard normal cell densities. Regenerated cartilage with these dimensions is large enough to resurface small joints such as the trapezium bone at the base of the human thumb. Such implants could not be grown statically, since cell growth stopped at 3-4 weeks and cell densities remained below normal. Optimization of the tissue culture environment is thus essential in order to cultivate clinically useful cartilage implants in vitro. (c) 1994 John Wiley & Sons, Inc. 相似文献
11.
In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved. 相似文献
12.
Vesicomyid bivalves are one of the most abundant symbiont-bearing species inhabiting deep-sea reducing ecosystems. Nevertheless, except for the hydrothermal vent clam Calyptogena magnifica, their metabolic rates have not been documented, and only assessed with ex situ experiments. In this study, gathering benthic chamber measurements and biomass estimation, we give the first in situ assessment of the respiration rate of these bivalves. The giant pockmark Regab, located at 3160m depth along the Congo-Angola margin, is a cold-seep site characterised by dense assemblages of two species of vesicomyids: Christineconcha regab and Laubiericoncha chuni with high dominance of C. regab. Two sites with dense aggregates of vesicomyids were selected to measure total oxygen uptake (TOU), and methane fluxes using IFREMER's benthic chamber CALMAR deployed by the ROV Quest 4000 (MARUM). Photographs were taken and bivalves were sampled using blade corers to estimate density and biomass. Total oxygen uptake was higher at Site 2 compared to Site 1 (respectively 492 mmol.m(-2).d(-1) and 332 mmol.m(-2).d(-1)). However, given vesicomyid densities and biomass, mean oxygen consumption rates were similar at both sites (1.9 to 2.5 μmol.g total dry mass(-1).h(-1) at the Site 1 and 1.8 to 2.3 μmol.g total dry mass(-1).h(-1) at Site 2). These respiration rates are higher than published ex situ estimates for cold-seep or hydrothermal vent bivalves. Although methane fluxes at the base of sulphide production were clearly higher at Site 2 (14.6 mmol.m(-2).d(-1)) than at Site 1 (0.3 mmol.m(-2).d(-1)), they do not seem to influence the respiration rates of these bivalves associated to sulphide-oxidizing symbionts. 相似文献
13.
14.
A novel system useful for aeration and cell retention in continuous perfused microcarrier cultures is described. The system is based on a vibrating cage that separates cells and microcarriers from the oxygenation chamber and allows gas bubble free oxygen transfer. In the cultivation of monkey kidney cells (VERO) on gelatin coated microcarriers, using different concentrations (5, 10 and 15 g Cytodex 3/liter) cell densities up to 107 cells per ml were obtained. The described system is scaleable. 相似文献
15.
Ionescu AM Schwarz EM Zuscik MJ Drissi H Puzas JE Rosier RN O'Keefe RJ 《Experimental cell research》2003,288(1):198-207
This study demonstrates that ATF-2 cooperates with Smad3 to regulate the rate of chondrocyte maturation in response to TGF-beta. ATF-2 was rapidly phosphorylated in chick embryonic cephalic sternal chondrocytes following treatment with TGF-beta, and the effect was dependent upon p38 kinase activity. Transient transfection of both wild-type ATF-2 or Smad3 activated the TGF-beta-responsive reporter, p3TP-Lux, and synergistic effects were observed with ATF-2 and Smad3 coexpression. The effect of Smad3 and ATF-2 alone and in combination on chondrocyte maturation was examined in cultures simultaneously infected with RCAS viruses expressing different viral envelope proteins. When expressed alone, wild-type ATF-2 or Smad3 both inhibit colX expression and partially mimic the effects of exogenous TGF-beta. However, in combination the effects were additive and similar to the inhibitory effects of TGF-beta on colX expression. Loss of function experiments using dominant negative ATF-2 or Smad3 partially blocked the inhibitory effect of TGF-beta on colX, while together the blockade was complete. Similar effects were observed with another TGF-beta-responsive gene, PTHrP. However, the induction of colX by BMP-2 was not affected by overexpression of either wild-type or dominant negative ATF-2, indicating specificity for TGF-beta signaling. In contrast, although TGF-beta does not activate CRE/CREB signaling, dominant negative CREB enhanced colX expression in control and in TGF-beta and BMP-2-treated cultures. Thus, ATF-2 regulates chondrocyte maturation as a direct target of TGF-beta signaling while CREB regulates differentiation by targeting genes independent of the individual signaling effects of TGF-beta or BMP-2. 相似文献
16.
The newly developed in situ oxygen uptake rate (in situ OUR) probe presented in this article is based on the in situ microscope technology platform. It is designed to measure the oxygen uptake rate (OUR) of mammalian cells, an important parameter for metabolic flux analysis, inside a reactor (in situ) and in real-time. The system isolates a known volume of cell culture from the bulk inside the bioreactor, monitors the oxygen consumption over time, and releases the sample again. The sample is mixed during the measurement with a new agitation system to keep the cells in suspension and prevent oxygen concentration gradients. The OUR measurement system also doubles as a standard dissolved oxygen (DO) probe for process monitoring when it is not performing OUR measurements. It can be equipped with two different types of optical sensors (i.e., DO, pH) simultaneously or a conventional polarographic DO-probe (Clark type). This new probe was successfully tested in baby hamster kidney perfusion cell cultures. 相似文献
17.
Perfusion culture with microcarriers was conducted to produce cell-associated and cell-free Varicella-Zoster virus (VZV) with human embryonic lung cells. After the cells were infected with VZV infected cells, glucose in the medium decreased rapidly, suggesting that VZV propagation was related closely to the use of glucose. While the yield of cell-associated VZV in microcarriers was 9,350 PFU/cm2, almost two-thirds of that in T-80 flask and cell factory, the yield of cell-free VZV in microcarriers was only about 10% of that in T-80 flask and cell factory. 相似文献
18.
Summary Oxygen uptake was measured in primary cultures of astrocytes from the brain hemispheres of newborn DBA mice by the aid of an oxygen electrode inserted directly into the culture flastk, i.e. using the flasks, completely filled with MEM medium, as the respirometer chamber. The respiration was inibitally intense (300 μmol per hr per 100 mg protein) but delined somewhat during the 6 hr of measurement, probably due to a depletion of intermediary metabolites released to the large surplus of medium. The respiratory rates were approximately identical in the presence of a CO2/ bicarbonate and a HEPES buffer. Exposure to a high concentration of potassium led to a transient stimulation of the oxygen uptake of almost 100%, a response that was very easily observed using the present method. Since no mechanical damage was inflicted upon the cells, culturing could be continued, if so desired, after the measurement. 相似文献
19.
Schlatmann JE Vinke JL Ten Hoopen HJ Heijnen JJ 《Biotechnology and bioengineering》1995,45(5):435-439
The relation between dissolved oxygen (DO) and the ajmalicine production rate of Catharanthus roseus was investigated in 15-L tank reactors at constant stirrer speed and gas flow rate. Below a DO concentration of 29% of air saturation the ajmalicine production rate was less than 0.06 mumol/g/d. Above a DO of 43% the ajmalicine production rate was constant at 0.21 mumol/g/d. Between a DO of 29% and 43% there was a strong relation between the ajmalicine production rate and the DO concentration. After a period of at least 12 days at DO =29% the culture lacked the ability to adapt to a DO >/=57%. A kinetic equation is proposed for the relation between DO and the specific ajmalicine production rate. (c) 1995 John Wiley & Sons, Inc. 相似文献
20.
Jäger V 《Cytotechnology》1996,20(1-3):191-198
Conclusion High density perfusion culture of insect cells for the production of recombinant proteins has proved to be an attractive alternative to batch and fed-batch processes. A comparison of the different production processes is summarized in Table 3. Internal membrane perfusion has a limited scale-up potential but appears to the method of choice in smaller lab-scale production systems. External membrane perfusion results in increased shear stress generated by pumping of cells and passing through microfiltration modules at high velocity. However, using optimized perfusion strategies this shear stress can be minimized such that it is tolerated by the cells. In these cases, perfusion culture has proven to be superior to batch production with respect to product yields and cell specific productivity. Although insect cells could be successfully cultivated by immobilization and perfusion in stationary bed bioreactors, this method has not yet been used in continuous processes. In fluidized bed bioreactors with continuous medium exchange cells showed reduced growth and protein production rates.For the cultivation of insect cells in batch and fedbatch processes numerous efforts have been made to optimize the culture medium in order to allow growth and production at higher cell densities. These improved media could be used in combination with a perfusion process, thus allowing substantially increased cell densities without raising the medium exchange rate. However, sufficient oxygen supply has to be guaranteed during fermentation in order to ensure optimal productivity. 相似文献