首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blastocystis is a unicellular stramenopile of controversial pathogenicity in humans. Although it is a strict anaerobe, Blastocystis has mitochondrion-like organelles with cristae, a transmembrane potential and DNA. An apparent lack of several typical mitochondrial pathways has led some to suggest that these organelles might be hydrogenosomes, anaerobic organelles related to mitochondria. We generated 12,767 expressed sequence tags (ESTs) from Blastocystis and identified 115 clusters that encode putative mitochondrial and hydrogenosomal proteins. Among these is the canonical hydrogenosomal protein iron-only [FeFe] hydrogenase that we show localizes to the organelles. The organelles also have mitochondrial characteristics, including pathways for amino acid metabolism, iron-sulfur cluster biogenesis, and an incomplete tricarboxylic acid cycle as well as a mitochondrial genome. Although complexes I and II of the electron transport chain (ETC) are present, we found no evidence for complexes III and IV or F1Fo ATPases. The Blastocystis organelles have metabolic properties of aerobic and anaerobic mitochondria and of hydrogenosomes. They are convergently similar to organelles recently described in the unrelated ciliate Nyctotherus ovalis. These findings blur the boundaries between mitochondria, hydrogenosomes, and mitosomes, as currently defined, underscoring the disparate selective forces that shape these organelles in eukaryotes.  相似文献   

2.
Acquisition of mitochondria by the ancestor of all living eukaryotes represented a crucial milestone in the evolution of the eukaryotic cell. Nevertheless, a number of anaerobic unicellular eukaryotes have secondarily discarded certain mitochondrial features, leading to modified organelles such as hydrogenosomes and mitosomes via degenerative evolution. These mitochondrion-derived organelles have lost many of the typical characteristics of aerobic mitochondria, including certain metabolic pathways, morphological traits, and, in most cases, the organellar genome. So far, the evolutionary pathway leading from aerobic mitochondria to anaerobic degenerate organelles has remained unclear due to the lack of examples representing intermediate stages. The human parasitic stramenopile Blastocystis is a rare example of an anaerobic eukaryote with organelles that have retained some mitochondrial characteristics, including a genome, whereas they lack others, such as cytochromes. Here we report the sequence and comparative analysis of the organellar genome from two different Blastocystis isolates as well as a comparison to other genomes from stramenopile mitochondria. Analysis of the characteristics displayed by the unique Blastocystis organelle genome gives us an insight into the initial evolutionary steps that may have led from mitochondria to hydrogenosomes and mitosomes.  相似文献   

3.
Euglena gracilis cells grown under aerobic and anaerobic conditions were compared for their whole cell rhodoquinone and ubiquinone content and for major protein spots contained in isolated mitochondria as assayed by two-dimensional gel electrophoresis and mass spectrometry sequencing. Anaerobically grown cells had higher rhodoquinone levels than aerobically grown cells in agreement with earlier findings indicating the need for fumarate reductase activity in anaerobic wax ester fermentation in Euglena. Microsequencing revealed components of complex III and complex IV of the respiratory chain and the E1beta subunit of pyruvate dehydrogenase to be present in mitochondria of aerobically grown cells but lacking in mitochondria from anaerobically grown cells. No proteins were identified as specific to mitochondria from anaerobically grown cells. cDNAs for the E1alpha, E2, and E3 subunits of mitochondrial pyruvate dehydrogenase were cloned and shown to be differentially expressed under aerobic and anaerobic conditions. Their expression patterns differed from that of mitochondrial pyruvate:NADP(+) oxidoreductase, the N-terminal domain of which is pyruvate:ferredoxin oxidoreductase, an enzyme otherwise typical of hydrogenosomes, hydrogen-producing forms of mitochondria found among anaerobic protists. The Euglena mitochondrion is thus a long sought intermediate that unites biochemical properties of aerobic and anaerobic mitochondria and hydrogenosomes because it contains both pyruvate:ferredoxin oxidoreductase and rhodoquinone typical of hydrogenosomes and anaerobic mitochondria as well as pyruvate dehydrogenase and ubiquinone typical of aerobic mitochondria. Our data show that under aerobic conditions Euglena mitochondria are prepared for anaerobic function and furthermore suggest that the ancestor of mitochondria was a facultative anaerobe, segments of whose physiology have been preserved in the Euglena lineage.  相似文献   

4.
Hydrogenosomes are membrane-bound organelles that compartmentalise the final steps of energy metabolism in a number of anaerobic eukaryotes. They produce hydrogen and ATP. Here we will review the data, which are relevant for the questions: how did the hydrogenosomes originate, and what was their ancestor? Notably, there is strong evidence that hydrogenosomes evolved several times as adaptations to anaerobic environments. Most likely, hydrogenosomes and mitochondria share a common ancestor, but an unequivocal proof for this hypothesis is difficult because hydrogenosomes lack an organelle genome - with one remarkable exception (Nyctotherus ovalis). In particular, the diversity of extant hydrogenosomes hampers a straightforward analysis of their origins. Nevertheless, it is conceivable to postulate that the common ancestor of mitochondria and hydrogenosomes was a facultative anaerobic organelle that participated in the early radiation of unicellular eukaryotes. Consequently, it is reasonable to assume that both, hydrogenosomes and mitochondria are evolutionary adaptations to anaerobic or aerobic environments, respectively.  相似文献   

5.
A hydrogenosome is a hydrogen-producing organelle, evolutionary related to mitochondria and is found in Parabasalia protozoa, certain chytrid fungi and certain ciliates. It displays similarities to and differences from mitochondria. Hydrogenosomes are spherical or slightly elongated organelles, although very elongated hydrogenosomes are also found. They measure from 200 nm to 1 μm, but under stress conditions can reach up to 2 μm. Hydrogenosomes are surrounded by two closely apposed membranes and present a granular matrix. Cardiolipin has been detected in their membranes, and frataxin, which is a conserved mitochondrial protein involved in iron metabolism, was also recently found. Hydrogenosomes have one or multiple peripheral vesicles, which incorporate calcium. The peripheral vesicle can be isolated from the hydrogenosomal matrix and can be considered as a distinct hydrogenosomal compartment. Dysfunctional hydrogenosomes can be removed by an autophagic process and further digested by lysosomes. Hydrogenosomes divide in three different ways, like mitochondria, by segmentation, partition and the heart form. They may divide at any phase of the cell cycle. Nucleoid or electron dense deposits found in hydrogenosomes can be considered artifacts or dysfunctional hydrogenosomes. The hydrogenosome does not contain a genome, although DNA has already been detected in one anaerobic ciliate. Hydrogenosomes can be considered as good drug targets since their metabolism is distinct from mitochondria.  相似文献   

6.
Unicellular eukaryotes that lack mitochondria typically contain related organelles such as hydrogenosomes or mitosomes. To characterize the evolutionary diversity of these organelles, we conducted an expressed sequence tag (EST) survey on the free-living amoeba Mastigamoeba balamuthi, a relative of the human parasite Entamoeba histolytica. From 19 182 ESTs, we identified 21 putative mitochondrial proteins implicated in protein import, amino acid interconversion and carbohydrate metabolism, two components of the iron-sulphur cluster (Fe-S) assembly apparatus as well as two enzymes characteristic of hydrogenosomes. By immunofluorescence microscopy and subcellular fractionation, we show that mitochondrial chaperonin 60 is targeted to small abundant organelles within Mastigamoeba. In transmission electron micrographs, we identified double-membraned compartments that likely correspond to these mitochondrion-derived organelles, The predicted organellar proteome of the Mastigamoeba organelle indicates a unique spectrum of functions that collectively have never been observed in mitochondrion-related organelles. However, like Entamoeba, the Fe-S cluster assembly proteins in Mastigamoeba were acquired by lateral gene transfer from epsilon-proteobacteria and do not possess obvious organellar targeting peptides. These data indicate that the loss of classical aerobic mitochondrial functions and acquisition of anaerobic enzymes and Fe-S cluster assembly proteins occurred in a free-living member of the eukaryote super-kingdom Amoebozoa.  相似文献   

7.
Fungal hydrogenosomes contain mitochondrial heat-shock proteins   总被引:3,自引:0,他引:3  
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.  相似文献   

8.
Blastocystis hominis is an anaerobic parasite of the human intestinal tract belonging to the Stramenopile group. Using genome sequencing project data, we describe here the complete sequence of a 29,270-bp circular DNA molecule that presents mitochondrial features (such as oxidative phosphorylation complex I subunits) but lacks complexes III, IV and V. Transmission electron microscopy analyses reveal that this molecule, as well as mitochondrial (NADH:ubiquinone oxidoreductase subunit 7 (NAD7), beta-succinyl-CoA synthetase (beta-SCS)) and hydrogenosomal (pyruvate ferredoxin oxido-reductase (PFOR), iron-hydrogenase) proteins, are located within double-membrane surrounded-compartments known as mitochondria-like organelles (MLOs). As there is no evidence for hydrogen production by this organism, we suggest that MLOs are more likely anaerobic mitochondria.  相似文献   

9.
Hydrogenases, oxygen-sensitive enzymes that can make hydrogen gas, are key to the function of hydrogen-producing organelles (hydrogenosomes), which occur in anaerobic protozoa scattered throughout the eukaryotic tree. Hydrogenases also play a central role in the hydrogen and syntrophic hypotheses for eukaryogenesis. Here, we show that sequences related to iron-only hydrogenases ([Fe] hydrogenases) are more widely distributed among eukaryotes than reports of hydrogen production have suggested. Genes encoding small proteins which contain conserved structural features unique to [Fe] hydrogenases were identified on all well-surveyed aerobic eukaryote genomes. Longer sequences encoding [Fe] hydrogenases also occur in the anaerobic eukaryotes Entamoeba histolytica and Spironucleus barkhanus, both of which lack hydrogenosomes. We also identified a new [Fe] hydrogenase sequence from Trichomonas vaginalis, bringing the total of [Fe] hydrogenases reported for this organism to three, all of which may function within its hydrogenosomes. Phylogenetic analysis and hypothesis testing using likelihood ratio tests and parametric bootstrapping suggest that the [Fe] hydrogenases in anaerobic eukaryotes are not monophyletic. Iron-only hydrogenases from Entamoeba, Spironucleus, and Trichomonas are plausibly monophyletic, consistent with the hypothesis that a gene for [Fe] hydrogenase was already present on the genome of the common, perhaps also anaerobic, ancestor of these phylogenetically distinct eukaryotes. Trees where the [Fe] hydrogenase from the hydrogenosomal ciliate Nyctotherus was constrained to be monophyletic with the other eukaryote sequences were rejected using a likelihood ratio test of monophyly. In most analyses, the Nyctotherus sequence formed a sister group with a [Fe] hydrogenase on the genome of the eubacterium Desulfovibrio vulgaris. Thus, it is possible that Nyctotherus obtained its hydrogenosomal [Fe] hydrogenase from a different source from Trichomonas for its hydrogenosomes. We find no support for the hypothesis that components of the Nyctotherus [Fe] hydrogenase fusion protein derive from the mitochondrial respiratory chain.  相似文献   

10.
Many highly specialised parasites have adapted to their environments by simplifying different aspects of their morphology or biochemistry. One interesting case is the mitochondrion, which has been subject to strong reductive evolution in parallel in several different parasitic groups. In extreme cases, mitochondria have degenerated so much in physical size and functional complexity that they were not immediately recognised as mitochondria, and are now referred to as 'cryptic'. Cryptic mitochondrion-derived organelles can be classified as either hydrogenosomes or mitosomes. In nearly all cases they lack a genome and all organellar proteins are nucleus-encoded and expressed in the cytosol. The same is true for the majority of proteins in canonical mitochondria, where the proteins are directed to the organelle by specific targeting sequences (transit peptides) that are recognised by translocases in the mitochondrial membrane. In this review, we compare targeting sequences of different parasitic systems with highly reduced mitochondria and give an overview of how the import machinery has been modified in hydrogenosomes and mitosomes.  相似文献   

11.
Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the β-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary history of the Excavata group.  相似文献   

12.
Gray MW 《EMBO reports》2011,12(9):873-873
The mitochondrion is probably the evolutionary remnant of a bacterial symbiont, yet contemporary mitochondria are nothing like contemporary bacteria. Evolutionary shrinkage of the mitochondrial genome is well documented, but what about wholesale shrinkage of the organelle itself?Considering its central role in energy metabolism in almost all eukaryotes, the mitochondrion is an amazingly plastic organelle, both evolutionarily and functionally. The few genes that the mitochondrial genome (mitochondrial DNA; mtDNA) encodes are clearly bacterial in origin—emanating from the α-proteobacterial lineage—supporting the widely held view that the mitochondrion is the evolutionary remnant of a bacterial symbiont (Gray et al, 2001). However, contemporary mitochondria are nothing like contemporary bacteria. For one thing, even the most gene-rich mtDNA encodes far less genetic information than the most gene-poor bacterial genome, and mitochondrial genomes are different from bacterial genomes in form, organization and mode of expression; these features vary tremendously among diverse eukaryotes. Mitochondrial genomes might be circular, linear or even highly fragmented, and they might contain highly fragmented and rearranged genes. Only within a poorly studied group of eukaryotic microbes—protists—known as jakobid flagellates does the mtDNA resemble a typical, albeit highly reduced, bacterial genome.In addition, the mitochondrial proteome is not only overwhelmingly (>90%) encoded in the nucleus, but only a small proportion (10–15%) is demonstrably α-proteobacterial in evolutionary affiliation. Thus, in the evolutionary transition from bacterial symbiont to integrated organelle, the mitochondrion has undergone an impressive degree of re-tailoring, shedding the bulk of its genetic information and taking on proteins of diverse evolutionary origins. Moreover, this re-tailoring is highly variable within different eukaryotic lineages, with an intriguing chunk of the mitochondrial proteome seeming to be organism-specific—lacking demonstrable sequence homologues other than in very close evolutionary relatives.Although the evolutionary shrinkage of the mitochondrial genome is well-documented, what is less widely appreciated is the wholesale shrinkage of the organelle itself in certain anaerobic eukaryotes. Taken to its extreme, such shrinkage involves complete loss of the mitochondrial genome, with a consequent reduction in the structural complexity and biochemical versatility of the organelle. This simplification might include elimination of the electron-transport chain (ETC) and thus lead to inability of the resulting mitochondrion-related organelle (MRO) to carry out a key function of aerobic mitochondria: ATP synthesis through coupled oxidative phosphorylation (for a full account, see Hjort et al, 2010).One such MRO, the hydrogenosome, is a hydrogen-producing organelle that was originally characterized in an anaerobic protist, Trichomonas vaginalis. The T. vaginalis hydrogenosome lacks mtDNA as well as components of the classic mitochondrial ETC, relying instead on substrate-level phosphorylation to generate ATP. Initially, the resemblance between the anaerobic biochemistry of the T. vaginalis MRO and that of anaerobic bacteria such as Clostridia raised the possibility that the hydrogenosome might have a different evolutionary origin than the classic aerobic mitochondrion. However, studies of hydrogenosomal proteins have demonstrated that the hydrogenosome is an evolutionarily derived (remnant) mitochondrion. Hydrogenosomes have been found in eukaryotes that are widely separated in phylogenetic trees, and in such trees, anaerobic, hydrogenosome-containing eukaryotes are often interspersed with close relatives that grow aerobically and contain conventional mitochondria. This punctate phylogenetic distribution suggests that the transition from mitochondrion to hydrogenosome has happened repeatedly and independently throughout eukaryotic evolution.The mitosome, an even more shrunken MRO that has not only dispensed entirely with a genome, but also has no ATP-generating capacity. This MRO was discovered in anaerobic eukaryotes that were initially thought to lack mitochondria entirely, the postulate being that they diverged away from the main line of eukaryotic evolution prior to the symbiosis that led to the mitochondrion. However, in all supposedly amitochondriate protists that have been examined, a candidate mitosome has been identified. As with hydrogenosomes, a punctate phylogenetic distribution of mitosomes is emerging.Recently, intermediate forms of ''shrinking organelle'' have been identified in the anaerobic protists Nyctotherus ovalis, Blastocystis sp. and Proteromonas lacertae (Hjort et al, 2010; Pérez-Brocal et al, 2010; de Graaf et al, 2011), relatives of brown algae and diatoms. In these cases, regions of the mtDNA that code for terminal portions of the ETC and for the mitochondrial ATP synthase have been discarded. The remaining DNA specifies genes for components of a mitochondrial translation system, as well as subunits of a proton-pumping complex I (NADH:ubiquinone oxidoreductase); a remarkable example—comparing the ciliate Nyctotherus with the stramenopiles Blastocystsis or Proteromonas—of convergent mtDNA evolution. These observations suggest that the transitional MROs of Nyctotherus, Blastocystis and Proteromonas retain a partial ETC, as well as the ability to synthesize protein, whereas other data (EST surveys) indicate that they are metabolically more complex than either hydrogenosomes or mitosomes. The discovery of these particular MROs is important because their existence argues that the transition from fully fledged aerobic mitochondrion to fully fledged anaerobic mitosome proceeds through, and might stop at, several intermediate stages: a realization that not only dramatically emphasizes the evolutionary and functional versatility of the mitochondrion, but also opens the possibility that we might yet uncover still other variations of this incredible shrinking organelle.  相似文献   

13.
Kim CS  Lee CH  Lee PH  Han S 《Molecules and cells》2004,17(2):347-352
We examined the damage to mitochondrial electron transport caused by photosensitization of a pheophorbide a derivative, DH-I-180-3, shown recently to induce necrosis of lung carcinoma cells with low dark toxicity. Confocal microscopy showed that DH-I-180-3 co-localized with dihydrorhodamine-123 suggesting that it mainly accumulates in mitochondria. The photosensitizer alone in the dark did not affect mitochondrial electron transport. Illumination of isolated mitochondria in the presence of DH-I-180-3 resulted in inhibition of both NADH- and succinate-dependent respiration. Measurement of the activity of each component of the electron transport chain revealed that Complex I and III were very susceptible to the treatment whereas Complex IV was resistant. We conclude that the photosensitizer is localized in mitochondria and, upon illumination, produces reactive oxygen species that inactivate Complexes I and III.  相似文献   

14.
The anaerobic chytrid Piromyces sp. E2 lacks mitochondria, but contains hydrogen-producing organelles, the hydrogenosomes. We are interested in how the adaptation to anaerobiosis influenced enzyme compartmentalization in this organism. Random sequencing of a cDNA library from Piromyces sp. E2 resulted in the isolation of cDNAs encoding malate dehydrogenase, aconitase and acetohydroxyacid reductoisomerase. Phylogenetic analysis of the deduced amino acid sequences revealed that they are closely related to their mitochondrial homologues from aerobic eukaryotes. However, the deduced sequences lack N-terminal extensions, which function as mitochondrial leader sequences in the corresponding mitochondrial enzymes from aerobic eukaryotes. Subcellular fractionation and enzyme assays confirmed that the corresponding enzymes are located in the cytosol. As anaerobic chytrids evolved from aerobic, mitochondria-bearing ancestors, we suggest that, in the course of the adaptation from an aerobic to an anaerobic lifestyle, mitochondrial enzymes were retargeted to the cytosol with the concomitant loss of their N-terminal leader sequences.  相似文献   

15.
We describe studies directed toward understanding the biogenesis and origin of the hydrogenosome, an unusual organelle found exclusively in certain anaerobic eukaryotes that lack mitochondria. Hydrogenosomes are involved in fermentative carbohydrate metabolism and are proposed to have arisen through conversion of mitochondria or via endosymbiosis with an anaerobic bacterium. We cloned a gene encoding the beta subunit of the hydrogenosomal protein succinyl-coenzyme A synthetase (beta-SCS) and isolated the protein from Trichomonas vaginalis. The T. vaginalis beta-SCS gene encodes a protein with a calculated molecular mass of 43,980 Da that has 43% amino acid identity (65% similarity) with beta-SCS from Escherichia coli. The trichomonad protein partitions into the soluble fraction of hydrogenosomes treated with sodium carbonate at high pH, consistent with a matrix localization within the organelle. The protein is encoded by a multigene family composed of at least three members. Amino-terminal sequencing of beta-SCS purified from T. vaginalis hydrogenosomes shows that the mature protein lacks the first nine amino acids encoded in the gene. This apparent amino-terminal leader sequence is strikingly similar to that of another hydrogenosomal protein and to mitochondrial presequences.  相似文献   

16.
Mitochondrial abnormalities are found in Alzheimer's disease (AD), but previous reports have not examined at-risk groups. In subjects with AD, mild cognitive impairment (MCI), and non-demented aged controls, platelet and lymphocyte mitochondria were isolated and analyzed for Complexes I, III, and IV of the electron transport chain. Western blots were used to control for differential enrichment of samples. Results demonstrated significant declines in Complexes III and IV in AD, and a significant decline in Complex IV in MCI. This report confirms mitochondrial deficiencies in AD, extends them to MCI, and suggests they are present at the earliest symptomatic stages of disease.  相似文献   

17.
Iron that is not specifically chaperoned through its essential functional pathways is damaging to biological systems, in major part by catalyzing the production of reactive oxygen species. Iron serves in several essential roles in the mitochondrion, as an essential cofactor for certain enzymes of electron transport, and through its involvement in the assembly of iron-sulfur clusters and iron-porphyrin (heme) complexes, both processes occurring in the mitochondrion. Therefore, there are mechanisms that deliver iron specifically to mitochondria, although these are not well understood. Under normal circumstances the mitochondrion has levels of stored iron that are higher than other organelles, though lower than in cytosol, while in some disorders of iron metabolism, mitochondrial iron levels exceed those in the cytosol. Under these circumstances of excess iron, protective mechanisms are overwhelmed and mitochondrial damage ensues. This may take the form of acute oxidative stress with structural damage and functional impairment, but also may result in long-term damage to the mitochondrial genome. This review discusses the evidence that mitochondria do indeed accumulate iron in several genetic disorders, and are a direct target for iron toxicity when it is present in excess. We then consider two classes of genetic disorders involving iron and the mitochondrion. The first include defects in genes directly regulating mitochondrial iron metabolism that lead to Friedreich's ataxia and the various sideroblastic anemias, with excessive mitochondrial iron accumulation. Under the second class, we discuss various primary hemochromatoses that lead to direct mitochondrial damage, with reference to mutations in genes encoding HFE, hepcidin, hemojuvelin, transferrin receptor-2, ferroportin, transferrin, and ceruloplasmin.  相似文献   

18.
All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.  相似文献   

19.
Protists that live under low-oxygen conditions often lack conventional mitochondria and instead possess mitochondrion-related organelles (MROs) with distinct biochemical functions. Studies of mostly parasitic organisms have suggested that these organelles could be classified into two general types: hydrogenosomes and mitosomes. Hydrogenosomes, found in parabasalids, anaerobic chytrid fungi, and ciliates, metabolize pyruvate anaerobically to generate ATP, acetate, CO(2), and hydrogen gas, employing enzymes not typically associated with mitochondria. Mitosomes that have been studied have no apparent role in energy metabolism. Recent investigations of free-living anaerobic protists have revealed a diversity of MROs with a wider array of metabolic properties that defy a simple functional classification. Here we describe an expressed sequence tag (EST) survey and ultrastructural investigation of the anaerobic heteroloboseid amoeba Sawyeria marylandensis aimed at understanding the properties of its MROs. This organism expresses typical anaerobic energy metabolic enzymes, such as pyruvate:ferredoxin oxidoreductase, [FeFe]-hydrogenase, and associated hydrogenase maturases with apparent organelle-targeting peptides, indicating that its MRO likely functions as a hydrogenosome. We also identified 38 genes encoding canonical mitochondrial proteins in S. marylandensis, many of which possess putative targeting peptides and are phylogenetically related to putative mitochondrial proteins of its heteroloboseid relative Naegleria gruberi. Several of these proteins, such as a branched-chain alpha keto acid dehydrogenase, likely function in pathways that have not been previously associated with the well-studied hydrogenosomes of parabasalids. Finally, morphological reconstructions based on transmission electron microscopy indicate that the S. marylandensis MROs form novel cup-like structures within the cells. Overall, these data suggest that Sawyeria marylandensis possesses a hydrogenosome of mitochondrial origin with a novel combination of biochemical and structural properties.  相似文献   

20.
Acetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial eukaryotes such as Trichomonas vaginalis, no acetate producing enzyme has ever been identified in these organelles. Acetate production is the last unidentified enzymatic reaction of hydrogenosomal carbohydrate metabolism. We identified a gene encoding an enzyme for acetate production in the genome of the hydrogenosome-containing protozoan parasite T. vaginalis. This gene shows high similarity to Saccharomyces cerevisiae acetyl-CoA hydrolase and Clostridium kluyveri succinyl-CoA:CoA-transferase. Here we demonstrate that this protein is expressed and is present in the hydrogenosomes where it functions as the T. vaginalis acetate:succinate CoA-transferase (TvASCT). Heterologous expression of TvASCT in CHO cells resulted in the expression of an active ASCT. Furthermore, homologous overexpression of the TvASCT gene in T. vaginalis resulted in an equivalent increase in ASCT activity. It was shown that the CoA transferase activity is succinate-dependent. These results demonstrate that this acetyl-CoA hydrolase/transferase homolog functions as the hydrogenosomal ASCT of T. vaginalis. This is the first hydrogenosomal acetate-producing enzyme to be identified. Interestingly, TvASCT does not share any similarity with the mitochondrial ASCT from Trypanosoma brucei, the only other eukaryotic succinate-dependent acetyl-CoA-transferase identified so far. The trichomonad enzyme clearly belongs to a distinct class of acetate:succinate CoA-transferases. Apparently, two completely different enzymes for succinate-dependent acetate production have evolved independently in ATP-generating organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号