首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang Q  Han B  Xie RJ  Cheng ML 《生理学报》2007,59(2):190-196
本文采用免疫组化、Western blot及荧光实时定量PCR方法,动态观察链脲佐菌素(streptozocin,STZ)诱导的大鼠糖尿病肾病(diabetic nephropathy,DN)发生早期肾脏骨形态发生蛋白-7(bone morphogenetic protein-7,BMP-7)、Smad6、Smad7蛋白及mRNA表达。结果显示,在正常及DN大鼠肾小管均有BMP-7、Smad6、Smad7蛋白表达,以胞浆表达为主。DN大鼠BMP-7、Smad6蛋白表达较正常大鼠明显增多(P〈0.05),且BMP-7的mRNA表达呈先增加后降低的状态;而Smad7蛋白和mRNA的表达均呈先增加后降低的状态。转化生长因子-β1(transforming growth factor-β1,TGF-β1)及Ⅰ型胶原(collagen typeⅠ,COL-Ⅰ)mRNA在DN大鼠肾脏表达较正常大鼠明显增多(P〈0.05),且随着糖尿病进展有逐渐增加的趋势。结果提示,作为TGF-β超家族信号分子的一员,BMP-7信号及抑制性Smad通路在DN肾纤维化发生早期可能起重要的反馈性抑制作用。  相似文献   

2.
L-3-Hydroxybutyrate (3HB) and D-3HB are enantiomers that exist in various rat tissues, and the ratio of the 2 compounds is of importance since it may affect glucose utilization in cardiomyocytes. In this study, we determined the concentrations of L-3HB and D-3HB in the tissues of normal and streptozotocin (STZ)-induced diabetic rats of different ages by column-switching high-performance liquid chromatography using a fluorescence detection system. In normal rats, the levels of L-3HB peaked at 8 weeks of age in the cerebrum, liver, spleen, lung, kidney, adrenal gland, and heart and then decreased afterwards. The concentrations of L-3HB were the highest in the heart, with 26.24±13.74 μmol/mg protein. In addition, there was an increase in the levels of (D+L)-3HB, D-3HB, and L-3HB in the tissues of diabetic rats with time, whereas the ratios of L-3HB to (D+L)-3HB declined (46.44% vs. 21.03%, P<0.05, in heart tissue after 24 weeks of STZ treatment). Both the concentration and the ratio of L-3HB may be associated with disease conditions, and the determination of L-3HB may help clarify the role of L-3HB under physiological and pathological conditions.  相似文献   

3.
Diabetic nephropathy is one of the most serious complications of diabetes and the major cause of end-stage renal failure. Consequences of diabetic nephropathy include increased kidney size and glomerular volume, thickening of basement membranes and progressive accumulation of extracellular matrix. Reports in the literature support an association between increased secretion of inflammatory molecules, such as cytokines, growth factors and metalloproteinases, and development of diabetic nephropathy. We investigated the potential of granulocyte colony- stimulating factor (G-CSF) as a therapeutic candidate for preventing diabetic nephropathy. We used 21 8-week-old male rats; 14 were administered a single dose of 60 mg/kg streptozotocin (STZ) to induce diabetes. The rats were divided into three groups of seven: group 1, control; group 2, diabetic; group 3, diabetic plus G-CSF treatment. After 4 weeks, immunoexpressions of transforming growth factor β1 (TGF-β1), Akt and CD34 levels were measured in the kidney tissue. Blood glucose, urine protein and the glomerular area also were measured for each group. We found that G-CSF treatment decreased TGF-β1 immunoexpression, urine protein and glomerular area in kidneys of diabetic rats, and increased CD 34 and Akt immunoexpression in kidneys of diabetic rats. The effects of G-CSF were independent of blood glucose levels. G-CSF may be a useful therapeutic agent for preventing diabetic nephropathy.  相似文献   

4.
STZ诱导糖尿病肾病大鼠模型的建立   总被引:24,自引:0,他引:24  
目的建立糖尿病大鼠动物模型,探讨其肾脏损害规律。方法用STZ65mg/kg一次性腹腔内注射方式制作糖尿病大鼠模型,设立空白对照组,饲养14周,期间观察大鼠血糖、尿糖及一般情况变化,实验结束时测定血肌酐、尿素氮、尿蛋白、尿白蛋白排泄率,取肾作病理及超微病理检查。结果模型组大鼠出现血肌酐、尿素氮、尿蛋白、尿白蛋白明显升高,出现肾脏肥大,病理显示明显的肾小球、肾小管病变。结论STZ诱导糖尿病大鼠肾脏表现肾小球及小管间质损害,可以用作糖尿病肾病研究的动物模型。  相似文献   

5.
目的运用高热量高蛋白饮食诱导GK大鼠2型糖尿病肾病模型的建立,并探讨其可能的作用机制。方法 28周龄GK大鼠24只,随机分成对照组、模型组,每组各12只,模型组给予高热量高蛋白饮食,对照组给予正常饮食,共8周。于第0、4、8周观察24 h尿微量白蛋白、24 h尿蛋白、尿肌酐、尿微量白蛋白/尿肌酐比值水平;于第0、8周观察空腹血糖和血清肌酐、尿素氮、总胆固醇、甘油三脂、一氧化氮水平;实验结束时取双肾称重并计算肾肥大指数,取肾组织观察病理形态学变化,检测肾组织钠钾ATP酶活性。结果与对照组比,模型组大鼠24 h尿微量白蛋白、24 h尿蛋白、尿微量白蛋白/尿肌酐比值、空腹血糖、总胆固醇、甘油三脂、一氧化氮、肾肥大指数水平和肾组织钠钾ATP酶活性显著提高,模型组肾小球体积增大,系膜基质增生,基底膜增厚明显。结论运用高热量高蛋白饮食诱导GK大鼠可成功建立2型糖尿病肾病模型。血糖血脂的上升是糖尿病肾病形成的重要因素,同时钠钾ATP酶活性增强进一步损伤肾小管功能,一氧化氮升高促使肾小球高灌注、高滤过,也是加速GK大鼠肾病形成的原因。  相似文献   

6.
The study has been designed to investigate the effect of benfotiamine and fenofibrate in diabetes-induced experimental vascular endothelial dysfunction (VED) and nephropathy. The single administration of streptozotocin (STZ) (50 mg/kg, i.p.) produced diabetes, which was noted to develop VED and nephropathy in 8 weeks. The diabetes produced VED by attenuating acetylcholine-induced endothelium dependent relaxation, impairing the integrity of vascular endothelium, decreasing serum nitrite/nitrate concentration and increasing serum TBARS and aortic superoxide anion generation. Further, diabetes altered the lipid profile by increasing the serum cholesterol, triglycerides and decreasing the high density lipoprotein. The nephropathy was noted to be developed in the diabetic rat that was assessed in terms of increase in serum creatinine, blood urea, proteinuria, and glomerular damage. The benfotiamine (70 mg/kg, p.o.) and fenofibrate (32 mg/kg, p.o.) or lisinopril (1 mg/kg, p.o., a standard agent) treatments were started in diabetic rats after 1 week of STZ administration and continued for 7 weeks. The treatment with benfotiamine and fenofibrate either alone or in combination attenuated diabetes-induced VED and nephropathy. In addition, the combination of benfotiamine and fenofibrate was noted to be more effective in attenuating the diabetes-induced VED and nephropathy when compared to treatment with either drug alone or lisinopril. Treatment with fenofibrate normalizes the altered lipid profile in diabetic rats, whereas benfotiamine treatment has no effect on lipid alteration in diabetic rats. It may be concluded that diabetes-induced oxidative stress, lipids alteration, and consequent development of VED may be responsible for the induction of nephropathy in diabetic rats. Concurrent administration of benfotiamine and fenofibrate may provide synergistic benefits in preventing the development of diabetes-induced nephropathy by reducing the oxidative stress and lipid alteration, preventing the VED and subsequently improving the renal function.  相似文献   

7.
The present study was conducted to investigate the effects of chromium histidinate (CrHis) against experimentally induced type II diabetes and on chromium (Cr), zinc (Zn), selenium (Se), manganese (Mn), iron (Fe), and copper (Cu) in serum, liver, and kidney of diabetic rats. The male Wistar rats (n = 60, 8 weeks old) were divided into four groups. Group I received a standard diet (12% of calories as fat); group II were fed standard diet and received CrHis (110 mcg CrHis/kg body weight per day); group III received a high-fat diet (HFD; 40% of calories as fat) for 2 weeks and then were injected with streptozotocin (STZ) on day 14 (STZ, 40 mg/kg i.p.; HFD/STZ); group IV were treated as group III (HFD/STZ) but supplemented with 110 mcg CrHis/kg body weight per day. The mineral concentrations in the serum and tissue were determined by atomic absorption spectrometry. Compared to the HFD/STZ group, CrHis significantly increased body weight and reduced blood glucose in diabetic rats (p < 0.001). Concentrations of Cr, Zn, Se, and Mn in serum, liver, and kidney of the diabetic rats were significantly lower than in the control rats (p < 0.0001). In contrast, higher Fe and Cu levels were found in serum and tissues from diabetic versus the non-diabetic rats (p < 0.001). Chromium histidinate supplementation increased serum, liver, and kidney concentrations of Cr and Zn both in diabetic and non-diabetic rats (p < 0.001). Chromium supplementation increased Mn and Se levels in diabetic rats (p < 0.001); however, it decreased Cu levels in STZ-treated group (p < 0.001). Chromium histidinate supplementation did not affect Fe levels in both groups (p > 0.05). The results of the present study conclude that supplementing Cr to the diet of diabetic rats influences serum and tissue Cr, Zn, Se, Mn, and Cu concentrations.  相似文献   

8.
目的检测中间丝蛋白Nestin(巢蛋白)在不同病程糖尿病大鼠肾组织中的表达,探讨Nestin表达变化与糖尿病肾病发生发展的关系。方法腹腔注射链脲佐菌素(STZ)复制糖尿病(DM)大鼠模型,分别于第2、4、8、12和16周检测血糖、血尿素氮及24h尿蛋白量,HE染色观察肾脏病理学改变,免疫组织化学及流式细胞术检测Nestin表达水平。结果 HE染色可见,与对照组相比,DM组大鼠从第2周起出现肾小球体积增大;至8周时系膜基质明显增多,系膜区增宽;12、16周时肾小球呈分叶状,肾小管上皮细胞可见明显空泡变性及坏死。免疫组织化学和流式细胞术结果显示,DM各组Nestin表达水平均高于正常对照组,且在第8周时达高峰,而后逐渐下降。结论在不同病程糖尿病大鼠模型中,中间丝蛋白Nestin的表达先升高,而后降低,可能参与了糖尿病肾损害的发生与发展。  相似文献   

9.
目的:研究阿魏酸(FA)对链脲佐菌素(STZ)致糖尿病大鼠肾脏足细胞损伤的影响,并探讨其可能的机制。方法:雄性SD大鼠尾静脉一次性注射STZ (40 mg/kg,i.v.),72 h后将血糖高于16.7 mmol/L者视为糖尿病造模成功,将其随机分为模型组、阿魏酸组,每组10只;另取10只雄性SD大鼠作为对照组;阿魏酸组(100 mg/kg,i.g.,qd),从大鼠血糖升高第5周开始给药,连续8周。测定空腹血糖、体重、肾脏脏器系数、血清尿素氮、肌酐含量;HE染色观察肾组织病理变化;免疫组化测定肾组织nephrin、podocin蛋白表达。结果:与对照组比较,模型组肾脏脏器系数增大,肾功能下降;病理学显示肾脏细胞萎缩,排列不整齐,并伴有间质增生;足细胞nephrin、podocin蛋白表达明显减少,阿魏酸组明显改善上述指标。结论:阿魏酸具有改善STZ致糖尿病大鼠肾脏功能的作用,其机制可能与上调肾脏足细胞nephrin、podocin蛋白表达有关。  相似文献   

10.
Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. Since synthetic drugs for diabetes are known to have side effects, fungal mushrooms as a natural product come into preventing the development of diabetes. Our previous report showed the hypoglycemic effect of extracellular fungal polysaccharides (EPS) in streptozotocin (STZ)-induced diabetic rats. In this study, we analyzed the differential expression patterns of rat kidney proteins from normal, STZ-induced diabetic, and EPS-treated diabetic rats, to discover diabetes-associated proteins in rat kidney. The results of proteomic analysis revealed that up to 500 protein spots were visualized, of which 291 spots were differentially expressed in the three experimental groups. Eventually, 51 spots were statistically significant and were identified by peptide mass fingerprinting. Among the differentially expressed renal proteins, 10 were increased and 16 were decreased significantly in diabetic rat kidney. The levels of different proteins, altered after diabetes induction, were returned to approximately those of the healthy rats by EPS treatment. A histopathological examination showed that EPS administration restored the impaired kidney to almost normal architecture. The study of protein expression in the normal and diabetic kidney tissues enabled us to find several diabetic nephropathy-specific proteins, such as phospholipids scramblase 3 and tropomyosin 3, which have not been mentioned yet in connection with diabetes.  相似文献   

11.
The Ca(2+)-ATPase activity of rat brain microsomes was studied in streptozotocin (STZ)-induced diabetes. Male rats, 200-250 g, were rendered diabetic by injection of STZ (45 mg kg(-1) body weight) via the teil vein. Brain tissues were collected at 1, 4 and 10 weeks after diabetes was induced for determination of Ca(2+)-ATPase activity, lipid peroxidation and tissue calcium levels. Diabetic rats had significantly elevated blood glucose levels compared to controls. Blood glucose levels were 92.92 +/- 1.22 mg dl(-1) (mean +/- SEM) for the control group, 362.50 +/- 9.61 mg dl(-1) at 1 week and >500 mg dl(-1) at 4, 8 and 10 weeks for the diabetics. Enzyme activities were significantly decreased at 1, 4, 8 and 10 weeks of diabetes relative to the control group (p < 0.001). Ca(2+)-ATPase activity was 0.084 +/- 0.008 U l(-1), 0.029 +/- 0.005 U l(-1), 0.029 +/- 0.006 U l(-1), 0.033 +/- 0.003 U l(-1) and 0.058 +/- 0.006 U l(-1) (mean +/- SEM) at control, 1, 4, 8 and 10 week of diabetes respectively. The change in calcium levels in diabetic rat brain at 8 and 10 weeks of diabetes was significantly higher than that of the control group (p < 0.05). On the other hand lipid peroxidation measured as TBARS (thiobarbituric acid reactive substances) was significantly higher at 8 and 10 weeks of diabetes (p < 0.05). The increase in lipid peroxidation observed in diabetic rat brain may be partly responsible for the decrease in calcium ATPase activity.  相似文献   

12.
The accumulation and subcellular distribution of copper in the kidney of streptozotocin-diabetic rats were investigated. Male Sprague-Dawley rats received streptozotocin (50 mg/kg body wt on two consecutive days) intraperitoneally and were fed either commercial or purified diet. The concentrations of copper, zinc, iron, and manganese present in intact kidney, renal cortex, and renal medulla were compared at various times. Chow-fed diabetic rats had a renal copper concentration 2.6 times greater than age-matched controls after 2 weeks. The concentration of zinc was only 30% higher in diabetic kidney than in control tissue, whereas the iron and manganese concentrations were similar for both groups. The additional complement of renal copper was localized entirely in the cortex and was significantly reduced by oral treatment with penicillamine, a copper chelating agent. When diabetic rats were fed purified diet (15-20 ppm Cu), the quantity of copper accumulated in the renal cortex increased from 2.3 to 8.7-fold higher than in control tissue from 1 to 4 weeks, respectively, after injection with streptozotocin. Copper levels in. both the soluble and particulate (165, 000g pellet) fractions of diabetic renal cortex were similarly increased at each time. Gel filtration Chromatographic analysis of the cytosol showed that all of the copper accumulated in the soluble fraction was associated with metallothionein. The distribution of excess copper in the particulate fraction was determined by differential centrifugation. The additional quantity of metal was localized in the crude nuclear fraction of renal cortex in the diabetic rat. Further analysis revealed that the lysosomal fraction from 3-weeek diabetic rats had a copper level 16-fold higher than in the controls. The possibility that accumulation of excessive levels of copper in the streptozotocin-diabetic kidney may contribute to the development of diabetic nephropathy is discussed.  相似文献   

13.
We investigated changes in renal hyaluronidase activity in streptozotocin (STZ)-induced diabetic rats during the progression of diabetes. Prior to the study, we characterized rat renal hyaluronidase activity to find that its optimum pH is 3.5 and that it consists of two isomers of 73 and 63 kDa, as detected by zymography. Hyaluronidase activity was traced in one whole kidney and in the cortex and medulla of the other kidney up to the 18th week after STZ injection. Whole kidney hyaluronidase activity started to increase on day 3 and reached a maximum level 2.4 times that of the controls in the 3rd week. Cortical hyaluronidase showed a similar tendency to that of whole kidney hyaluronidase, while medullary hyaluronidase activity continued to increase until the 8th week, suggesting their different involvements in the progression of diabetic nephropathy. In zymography, the intensities of the two isomer bands increased with the progression of diabetes, but the intensity ratio did not change significantly and no new isomer band appeared. Renal HAase activity increased only in STZ-induced diabetic rats, but not in spontaneously diabetic Goto-Kakizaki rats still without remarkable renal disorder. Based on these findings, increased renal HAase activity may serve as a useful marker for diabetic nephropathy.  相似文献   

14.
Vitamin E treatment has been found to be beneficial in preventing or reducing diabetic nephropathy. Increased tissue calcium and abnormal microsomal Ca(2+)-ATPase activity have been suggested as contributing factors in the development of diabetic nephropathy. This study was undertaken to test the hypothesis that vitamin E reduces lipid peroxidation and can prevent the abnormalities in microsomal Ca(2+)-ATPase activity and calcium levels in kidney of streptozotocin (STZ)-induced diabetic rats. Male rats were rendered diabetic by a single STZ injection (55 mg x kg(-1) i.p.). After diabetes was verified, diabetic and age-matched control rats were untreated or treated with vitamin E (400-500 IU kg(-1) x day(-1), orally) for 10 weeks. Ca(2+)-ATPase activity and lipid peroxidation (MDA) were determined spectrophotometrically. Blood glucose levels increased approximately five-fold (> 500 mg x dl(-1)) in untreated-diabetic rats but decreased to 340+/-27 mg x dl(-1) in the vitamin E treated-diabetic group. Kidney MDA levels did not significantly change in the diabetic state. However, vitamin E treatment markedly inhibited MDA levels in both control and diabetic animals. Ca(2+)-ATPase activity was 0.483+/-0.008 U l(-1) in the control group and significantly increased to 0.754+/-0.010 U l(-1) in the STZ-diabetic group (p < 0.001). Vitamin E treatment completely prevented the diabetes-induced increase in Ca(2+)-ATPase activity (0.307+/-0.025 U l(-1), p < 0.001) and also reduced the enzyme activity in normal control rats. STZ-diabetes resulted in approximately two-fold increase in total calcium content of kidney. Vitamin E treatment led to a significant reduction in kidney calcium levels of both control and diabetic animals (p < 0.001). Thus, vitamin E treatment can lower blood glucose and lipid peroxidation, which in turn prevents the abnormalities in kidney calcium metabolism of diabetic rats. This study describes a potential biochemical mechanism by which vitamin E supplementation may delay or inhibit the development of cellular damage and nephropathy in diabetes.  相似文献   

15.
Diabetic kidney disease has been associated with the presence of lipid deposits. We assumed that curcumin, a polyphenol, would attenuate the tissue dyslipidemic condition through activation of 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and suppression of sterol regulatory element-binding protein (SREBP)-1c in the kidney and would prevent renal progression in experimental type 1 diabetic rats. Diabetes was induced with streptozotocin (STZ) (55 mg/kg) by intraperitoneal injection in male Sprague–Dawley rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic and diabetic treated with curcumin (100 mg/kg/day) by gavage for 8 weeks. We found that curcumin decreased plasma triglyceride and the amount of renal triglyceride significantly. Furthermore, treatment of diabetic rats with curcumin increased the phosphorylation of AMPK and prevented the increased renal expression of SREBP-1c and, as a result, decreased the expression of acetyl CoA carboxylase and fatty acid synthase as well as adipose differentiation-related protein, a marker of cytoplasmic droplets. We also demonstrate that curcumin significantly suppressed the increased expression of transforming growth factor β, vascular endothelial growth factor and extracellular matrix proteins such as type IV collagen and fibronectin. In addition, curcumin treatment increased nephrin expression to near-normal levels in diabetic rats. These results demonstrated that curcumin protects against the development of diabetic nephropathy through the AMPK–SREBP pathway and the reduction of renal triglyceride accumulation which could be a possible mechanism by which curcumin preserves renal function in diabetes.  相似文献   

16.
Liu Y  Qi H  Wang Y  Wu M  Cao Y  Huang W  Li L  Ji Z  Sun H 《Phytomedicine》2012,19(8-9):693-698
To evaluate the cardioprotective effect of allicin (AL) on myocardial injury of streptozotocin (STZ)-induced diabetic rats and to further explore its underlying mechanisms. Hyperglycemia was induced in rats by single intraperitoneal injection of STZ (40 mg/kg). Three days after STZ induction, the hyperglycemic rats (plasma glucose levels ≥ 16.7 mmol/l) were treated with AL by intraperitoneal injection at the doses of 4 mg/kg, 8 mg/kg, and 16 mg/kg daily for 28 days. The fasting blood glucose levels were measured on every 7th day during the 28 days of treatment. The body weight, blood glucose, and parameter of cardiac function were detected after 4 weeks to study the cardioprotective effects of AL on diabetic rats in vivo. The apoptotic index of cardiomyocytes was estimated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The expressions of Fas, Bcl-2, CTGF, and TGF-β(1) protein were studied by immunohistochemistry. Laser scanning confocal microscopy technique was utilized to observe the effects of AL on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular cardiomyocytes. AL at the doses of 4 mg/kg, 8 mg/kg, and 16 mg/kg significantly reduced blood glucose levels in a dose-dependent manner and increased body weight as well compared with the model group. Hemodynamic parameters including left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and maximum rate of left ventricular pressure rise and fall (+dp/dtmax and -dp/dtmax) were significantly restored back to normal levels in AL-treated (8 mg/kg and 16 mg/kg) rats compared with diabetic model rats. AL markedly inhibited cardiomyocyte apoptosis induced by diabetic cardiac injury. Further investigation revealed that this inhibitory effect on cell apoptosis was mediated by increasing anti-apoptotic protein Bcl-2 and decreasing pro-apoptotic protein Fas. Additional experiments demonstrated AL abrogated myocardial fibrosis by blocking the expressions of CTGF and TGF-β(1) protein. AL shows protective action on myocardial injury in diabetic rats. The possible mechanisms were involved in reducing blood glucose, correcting hemodynamic impairment, reducing Fas expression, activating Bcl-2 expression, decreasing intracellular calcium overload, inhibiting the expressions of TGF-β(1) and CTGF, and further improving cardiac function.  相似文献   

17.
目的:探讨建立高血压合并糖尿病(DiabetesMellitus,DM)大鼠模型的方法,并观察模型的稳定性。方法:采用链脲佐菌素(Streptozotocin,STZ)腹腔注射的方法造模。8周龄的SHR大鼠(spontaneouslyhypertensiverats)16只,随机等分成对照组和造模组。另选8只8周龄WKY大鼠作为正常血压对照组。给予造模组SHR按55mg/kg体重的剂量腹腔注射STZ,诱导建立糖尿病高血压大鼠动物模型。结果:小剂量STZ(55mg/kg)腹腔注射SHR制备的糖尿病高血压大鼠模型,造模成本低,成模率高,模型稳定。结论:造模组能成功诱导建立糖尿病高血压大鼠模型。  相似文献   

18.
Accumulating evidence suggests that inflammatory processes are involved in the development of diabetic nephropathy (DN). However, there are no effective interventions for inflammation in the diabetic kidneys. Here, we tested the hypothesis that Astragaloside IV(AS-IV), a novel saponin purified from Astragalus membranaceus (Fisch) Bge, ameliorates DN in streptozotocin (STZ)-induced diabetic rats through anti-inflammatory mechanisms. Diabetes was induced with STZ (65 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats were divided into three groups (n = 8/each group), namely, diabetic rats, diabetic rats treated with AS-IV at 5 and 10 mg kg?1 d?1, p.o., for 8 weeks. The normal rats were chosen as nondiabetic control group (n = 8). The rats were sacrificed 10 weeks after induction of diabetes. AS-IV ameliorated albuminuria, renal histopathology and podocyte foot process effacement in diabetic rats. Renal NF-κB activity, as wells as protein and mRNA expression were increased in diabetic kidneys, accompanied by an increase in mRNA expression and protein content of TNF-α, MCP-1 and ICAM-1 in kidney tissues. The α1-chain type IV collagen mRNA was elevated in the kidneys of diabetic rats. All of these abnormalities were partially restored by AS-IV. AS-IV also decreased the serum levels of TNF-α, MCP-1 and ICAM-1 in diabetic rats. These findings suggest that AS-IV, a novel anti-inflammatory agent, attenuated DN in rats through inhibiting NF-κB mediated inflammatory genes expression.  相似文献   

19.
Fang KY  Lou JL  Xiao Y  Shi MJ  Gui HZ  Guo B  Zhang GZ 《生理学报》2008,60(1):125-134
本文旨在观察转化生长因子β1(transforming growth factor-β1,TGF-β1)和锌指转录因子Snail1在糖尿病(diabetes mellitus,DM)大鼠肾组织中的表达,并初步探讨它们与肾小管上皮细胞向间充质细胞转变的关系。链脲佐菌素(streptozotocin,STZ)诱发大鼠DM,按病程分为2、4、8、12、16、20、24周、16周胰岛素治疗(16wA)、20,周胰岛素治疗(20wA)和24周胰岛素治疗(24wA)组(n=6)。其中胰岛素治疗组动物从第13周起用胰岛素控制血糖至正常水平,每一时点均设鼠龄匹配的正常对照组。测定各组血糖、24h尿蛋白、血肌酐(serum creatinine,Scr)、肾脏指数。PAS染色光镜观察肾脏病理学改变。免疫组织化学检测肾脏Snail1、TGF-β1、α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、E-钙黏素和纤连蛋白(fibronectin,FN)的表达;Western blot检测肾皮质Snail1、TGF-β1和E-钙黏素蛋白表达。RT-PCR检测肾皮质Snail1和E-钙黏素mRNA表达。结果显示:(1)DM各组大鼠的血糖、24h尿蛋白、Scr、肾脏指数均较正常对照组明显升高(P〈0.05,P〈0.01),胰岛素治疗组大鼠上述指标均较DM组显著降低(P〈0.01)。(2)TGF-β1和Snail1免疫组织化学阳性染色见于DM各组大鼠肾小管,正常对照组未见阳性表达,胰岛素治疗组大鼠弱阳性表达,并随治疗时间延长而减少。从16周开始在DM大鼠肾小管上皮细胞可见α-SMA蛋白阳性表达,胰岛素治疗组大鼠未见α-SMA蛋白表达;DM组大鼠E-钙黏素蛋白阳性染色明显少于正常对照组。(3)DM组大鼠肾皮质TGF-β1和Snail1蛋白以及Snail1 mRNA表达较正常对照组显著增高(P〈0.01),胰岛素治疗组大鼠则显著低于DM组(P〈0.01);DM组E-钙黏素mRNA和蛋白表达与TGF-β1和Snail1呈相反变化。结果提示,TGF-β1和Snail1可能参与DM大鼠肾小管上皮细胞向间充质细胞转变,胰岛素治疗可抑制两者表达并阻断肾小管上皮细胞向间充质细胞转变。  相似文献   

20.
We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号