首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In anoxic environments, methane oxidation is conducted in a syntrophic process between methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). Microbial mats consisting of ANME, SRB and other microorganisms form methane seep-related carbonate buildups in the anoxic bottom waters of the Black Sea Crimean shelf. To shed light on the localization of the biochemical processes at the level of single cells in the Black Sea microbial mats, we applied antibody-based markers for key enzymes of the relevant metabolic pathways. The dissimilatory adenosine-5′-phosphosulfate (APS) reductase, methyl-coenzyme M reductase (MCR) and methanol dehydrogenase (MDH) were selected to localize sulfate respiration, reverse methanogenesis and aerobic methane oxidation, respectively. The key enzymes could be localized by double immunofluorescence and immunocytochemistry at light- and electron microscopic levels. In this study we show that sulfate reduction is conducted synchronized and in direct proximity to reverse methanogenesis of ANME archaea. Microcolonies in interspaces between ANME/SRB express methanol dehydrogenase, which is indicative for oxidation of C1 compounds by methylotrophic or methanotrophic bacteria. Thus, in addition to syntrophic AOM, oxygen-dependent processes are also conducted by a small proportion of the microbial population.  相似文献   

2.
A detailed study of the processes of anaerobic methane oxidation and sulfate reduction in the bacterial mats occurring on coral-like carbonate structures in the region of methane seeps in the Black Sea, as well as of the phenotypic diversity of sulfate-reducing bacteria developing in this zone, has been performed. The use of the radioisotopic method shows the microbial mat structure to be heterogeneous. The peak activity of the two processes was revealed when a mixture of the upper (dark) and underlying (intensely pink) layers was introduced into an incubation flask, which confirms the suggestion that methanotrophic archaea and sulfate-reducing bacteria closely interact in the process of anaerobic methane oxidation. Direct correlation between the rate of anaerobic methane oxidation and the methane and electron acceptor concentrations in the medium has been experimentally demonstrated. Several enrichment and two pure cultures of sulfate-reducing bacteria have been obtained from the near-bottom water and bacterial mats. Both strains were found to completely oxidize the substrates to CO2 and H2S. The bacteria grow at temperatures ranging from -1 to 18 (24) degrees C, with an optimum in the 10-18 degrees C range, and require the presence of 1.5-2.5% NaCl and 0.07-0.2% MgCl2 x 6H2O. Regarding the aggregate of their phenotypic characteristics (cell morphology, spectrum of growth substrates, the capacity for complete oxidation), the microorganisms isolated have no analogues among the psychrophilic sulfate-reducing bacteria already described. The results obtained demonstrate the wide distribution of psychrophilic sulfate-reducing bacteria in the near-bottom water and bacterial mats covering the coral-like carbonate structures occurring in the region of methane seeps in the Black Sea, as well as the considerable catabolic potential of this physiological group of psychrophilic anaerobes in deep-sea habitats.  相似文献   

3.
Pimenov  N. V.  Ivanova  A. E. 《Microbiology》2005,74(3):362-370
A detailed study of the processes of anaerobic methane oxidation and sulfate reduction in the bacterial mats occurring on coral-like carbonate structures in the region of methane seeps in the Black Sea, as well as of the phenotypic diversity of sulfate-reducing bacteria developing in this zone, has been performed. The use of the radioisotopic method shows the microbial mat structure to be heterogeneous. The peak activity of the two processes was revealed when a mixture of the upper (dark) and underlying (intensely pink) layers was introduced into an incubation flask, which confirms the suggestion that methanotrophic archaea and sulfate-reducing bacteria closely interact in the process of anaerobic methane oxidation. Direct correlation between the rate of anaerobic methane oxidation and the methane and electron acceptor concentrations in the medium has been experimentally demonstrated. Several enrichment and two pure cultures of sulfate-reducing bacteria have been obtained from the near-bottom water and bacterial mats. Both strains were found to completely oxidize the substrates to CO2 and H2S. The bacteria grow at temperatures ranging from −1 to 18 (24)°C, with an optimum in the 10–18°C range, and require the presence of 1.5–2.5% NaCl and 0.07–0.2% MgCl 2⋅6H2O. Regarding the aggregate of their phenotypic characteristics (cell morphology, spectrum of growth substrates, the capacity for complete oxidation), the microorganisms isolated have no analogues among the psychrophilic sulfate-reducing bacteria already described. The results obtained demonstrate the wide distribution of psychrophilic sulfate-reducing bacteria in the near-bottom water and bacterial mats covering the coral-like carbonate structures occurring in the region of methane seeps in the Black Sea, as well as the considerable catabolic potential of this physiological group of psychrophilic anaerobes in deep-sea habitats__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 420–429.Original Russian Text Copyright © 2005 by Pimenov, Ivanova.  相似文献   

4.
Anaerobic oxidation of methane (AOM) with sulfate is apparently catalyzed by an association of methanotrophic archaea (ANME) and sulfate-reducing bacteria. In many habitats, the free energy change (ΔG) available through this process is only -20 kJ/mol and therefore AOM with sulfate reduction generating life-supporting ATP is predicted to operate near thermodynamic equilibrium (ΔG=0 kJ/mol). On the basis of meta-genome sequencing and enzyme studies, it has been proposed that AOM in ANME is catalyzed by the same enzymes that catalyze CO2 reduction to CH4 in methanogenic archaea. Here, this proposal is reviewed and evaluated in terms of the process thermodynamics, kinetics, and enzyme reversibilities. Currently, there is no evidence for the presence of the gene that encodes methylene-tetrahydromethanopterin reductase in ANME, one of the central enzymes in the CO2 to CH4 pathway. However, all of the remaining enzymes do appear to be present and, with the exception of a coenzyme M-S-S-coenzyme B heterodisulfide reductase, all of these enzymes have been confirmed to catalyze reversible reactions.  相似文献   

5.
The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments – namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50–100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction (∼10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.  相似文献   

6.
A nodule-shaped microbial mat was found subsurface in sediments of a gas seep in the anoxic Black Sea. This mat was dominated by ANME-1 archaea and consumed methane and sulfate simultaneously. We propose that such subsurface mats represent the initial stage of previously investigated microbial reefs.  相似文献   

7.
Subsurface Microbial Methanotrophic Mats in the Black Sea   总被引:1,自引:1,他引:0       下载免费PDF全文
A nodule-shaped microbial mat was found subsurface in sediments of a gas seep in the anoxic Black Sea. This mat was dominated by ANME-1 archaea and consumed methane and sulfate simultaneously. We propose that such subsurface mats represent the initial stage of previously investigated microbial reefs.  相似文献   

8.
Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate‐driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment.  相似文献   

9.
10.
Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. Recent investigations showed that another characteristic feature of cold seeps is the occurrence of methanotrophic archaea, which can be identified by specific biomarker lipids and 16S rDNA analysis. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH), bacterial production, enzyme activity, and sulfate reduction rates. Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6 2 10 10 cells cm m 3 ) and sulfate reduction rates (up to 8 w mol cm m 3 d m 1 ) in hydrate-bearing sediments, as well as a high bacterial diversity, especially in the group of i -proteobacteria including members of the branches Desulfosarcina/Desulfococcus , Desulforhopalus , Desulfobulbus , and Desulfocapsa . Most of the diversity of sulfate-reducing bacteria in hydrate-bearing sediments comprises seep-endemic clades, which share only low similarities with previously cultured bacteria.  相似文献   

11.
Microbial communities inhabiting deep-sea cold seep sediments at the northeastern Japan Sea were characterized by molecular phylogenetic and chemical analyses. White patchy microbial mats were observed along the fault offshore the Hokkaido Island and sediment samples were collected from two stations at the southern foot of the Shiribeshi seamount (M1 site at a depth of 2,961 m on the active fault) and off the Motta Cape site (M2 site at a depth of 3,064 m off the active fault). The phylogenetic and terminal-restriction fragment polymorphism analyses of PCR-amplified 16S rRNA genes revealed that microbial community structures were different between two sampling stations. The members of ANME-2 archaea and diverse bacterial components including sulfate reducers within Deltaproteobacteria were detected from M1 site, indicating the occurrence of biologically mediated anaerobic oxidation of methane, while microbial community at M2 site was predominantly composed of members of Marine Crenarchaeota group I, sulfate reducers of Deltaproteobacteria, and sulfur oxidizers of Epsilonproteobacteria. Chemical analyses of seawater above microbial mats suggested that concentrations of sulfate and methane at M1 site were largely decreased relative to those at M2 site and carbon isotopic composition of methane at M1 site shifted heavier (13C-enriched), the results of which are consistent with molecular analyses. These results suggest that the mat microbial communities in deep-sea cold seep sediments at the northeastern Japan Sea are significantly responsible for sulfur and carbon circulations and the geological activity associated with plate movements serves unique microbial habitats in deep-sea environments.  相似文献   

12.
The anaerobic oxidation of methane (AOM) is a key process in the global methane cycle, and the majority of methane formed in marine sediments is oxidized in this way. Here we present results of an in vitro 13CH4 labeling study (delta13CH4, approximately 5,400 per thousand) in which microorganisms that perform AOM in a microbial mat from the Black Sea were used. During 316 days of incubation, the 13C uptake into the mat biomass increased steadily, and there were remarkable differences for individual bacterial and archaeal lipid compounds. The greatest shifts were observed for bacterial fatty acids (e.g., hexadec-11-enoic acid [16:1Delta11]; difference between the delta13C at the start and the end of the experiment [Deltadelta13C(start-end)], approximately 160 per thousand). In contrast, bacterial glycerol diethers exhibited only slight changes in delta13C (Deltadelta13C(start-end), approximately 10 per thousand). Differences were also found for individual archaeal lipids. Relatively high uptake of methane-derived carbon was observed for archaeol (Deltadelta13C(start-end), approximately 25 per thousand), a monounsaturated archaeol, and biphytanes, whereas for sn-2-hydroxyarchaeol there was considerably less change in the delta13C (Deltadelta13C(start-end), approximately 2 per thousand). Moreover, an increase in the uptake of 13C for compounds with a higher number of double bonds within a suite of polyunsaturated 2,6,10,15,19-pentamethyleicosenes indicated that in methanotrophic archaea there is a biosynthetic pathway similar to that proposed for methanogenic archaea. The presence of group-specific biomarkers (for ANME-1 and ANME-2 associations) and the observation that there were differences in 13C uptake into specific lipid compounds confirmed that multiple phylogenetically distinct microorganisms participate to various extents in biomass formation linked to AOM. However, the greater 13C uptake into the lipids of the sulfate-reducing bacteria (SRB) than into the lipids of archaea supports the hypothesis that there is autotrophic growth of SRB on small methane-derived carbon compounds supplied by the methane oxidizers.  相似文献   

13.
Anaerobic oxidation of methane (AOM) is an important methane sink in the ocean but the microbes responsible for AOM are as yet resilient to cultivation. Here we describe the microbial analysis of an enrichment obtained in a novel submerged‐membrane bioreactor system and capable of high‐rate AOM (286 μmol gdry weight?1 day?1) coupled to sulfate reduction. By constructing a clone library with subsequent sequencing and fluorescent in situ hybridization, we showed that the responsible methanotrophs belong to the ANME‐2a subgroup of anaerobic methanotrophic archaea, and that sulfate reduction is most likely performed by sulfate‐reducing bacteria commonly found in association with other ANME‐related archaea in marine sediments. Another relevant portion of the bacterial sequences can be clustered within the order of Flavobacteriales but their role remains to be elucidated. Fluorescent in situ hybridization analyses showed that the ANME‐2a cells occur as single cells without close contact to the bacterial syntrophic partner. Incubation with 13C‐labelled methane showed substantial incorporation of 13C label in the bacterial C16 fatty acids (bacterial; 20%, 44% and 49%) and in archaeal lipids, archaeol and hydroxyl‐archaeol (21% and 20% respectively). The obtained data confirm that both archaea and bacteria are responsible for the anaerobic methane oxidation in a bioreactor enrichment inoculated with Eckernförde bay sediment.  相似文献   

14.
The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ⩽25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ⩾75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.  相似文献   

15.
In the euxinic waters of the NW’ Black Sea shelf, tower-like carbonate build-ups up to several metres in height grow at sites of cold methane seepage. These structures are part of an unique microbial ecosystem that shows a considerable biodiversity and a remarkable degree of organization. The accretion of the build-ups is promoted by the growth of centimetre-sized, methane-filled spheres constructed by calcifying microbial mats. Progressive mineralization of these spheres involves the early precipitation of strongly luminescent high-Mg-calcite rich in iron sulphides, and closely interfingered aragonite phases that finally create the stable (mega-) thrombolithic fabric of the towers. Within the microbial mats, microorganisms occur in distinctive spatial arrangements. Major players among the microbial consortia are the archaea groups ANME-1 and ANME-2, Crenarchaeota, and sulphate-reducing bacteria (SRB) of the Desulfosarcina/Desulfobacterium group. The intracellular precipitation of iron sulphides (greigite) by some of these bacteria, growing in close association with ANME-2, suggests iron cycling as an additional biogeochemical pathway involved in the anaerobic oxidation of methane (AOM).  相似文献   

16.
【目的】当前对全球冷泉生态系统微生物生态学研究显示,冷泉生态系统中主要微生物类群为参与甲烷代谢的微生物,它们的分布差异与所处冷泉区生物地球化学环境密切相关。但在冷泉区内也存在环境因子截然不同的生境,尚缺乏比较冷泉区内小尺度生境间微生物多样性和分布规律的研究。本研究旨在分析南海Formosa冷泉区内不同生境间微生物多样性差异,完善和理解不同环境因子对冷泉内微生物群落结构的影响。【方法】对采集自南海Formosa冷泉区不同生境(黑色菌席区、白色菌席区和碳酸盐岩区)沉积物样本中古菌和细菌16S rRNA基因进行测序,结合环境因子,比较微生物多样性差异,分析环境因子对微生物分布的影响。【结果】发现在Formosa冷泉内的不同生境中,甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)是主要古菌类群,占古菌总体相对丰度超过70%;在菌席区ANME-1b和ANME-2a/b是主要ANME亚群,碳酸盐岩区则是ANME-1b。硫酸盐还原菌(sulfate-reducing bacteria,SRB)和硫氧化菌(sulfur-oxidizing bacteria...  相似文献   

17.
Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring   总被引:4,自引:0,他引:4  
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   

18.
Microbiological and biogeochemical measurements showed that the intensities of CO2 assimilation, methane oxidation, and sulfate reduction in the Lost City vent field (30 degrees N) reach 3.8 microg C/(1 day), 0.06 microg C/(1 day), and 117 microg S/(1 day), respectively. On the surface of the carbonate structures occurring in this field, two varieties of bacterial mats were found. The first variety, which is specific to the Lost City alkaline vent field, represents jelly bacterial mats dominated by slime-producing bacteria of several morphotypes. This mat variety also contains chemolithotrophic and heterotrophic microorganisms, either microaerobic or anaerobic. The intensities of CO2 assimilation, methane oxidation, and sulfate reduction in this variety reach 747 microg C/(dm3 day), 0.02 microg C/(dm3 day), and 28,000 microg S/(dm3 day), respectively. Bacterial mats of the second variety are formed by nonpigmented filamentous sulfur bacteria, which are close morphologically to Thiothrix. The intensities of CO2 assimilation, methane oxidation, and sulfate reduction in the second mat variety reach 8.2 microg C/(dm3 day), 5.8 microg C/(dm3 day), and 17,000 microg S/(dm3 day), respectively. These data suggest the existence of subsurface microflora in the Lost City vent field.  相似文献   

19.
The sulfate‐dependent, anaerobic oxidation of methane (AOM) is an important sink for methane in marine environments. It is carried out between anaerobic methanotrophic archaea (ANME) and sulfate‐reducing bacteria (SRB) living in syntrophic partnership. In this study, we compared the genomes, gene expression patterns and ultrastructures of three phylogenetically different microbial consortia found in hydrocarbon‐rich environments under different temperature regimes: ANME‐1a/HotSeep‐1 (60°C), ANME‐1a/Seep‐SRB2 (37°C) and ANME‐2c/Seep‐SRB2 (20°C). All three ANME encode a reverse methanogenesis pathway: ANME‐2c encodes all enzymes, while ANME‐1a lacks the gene for N5,N10‐methylene tetrahydromethanopterin reductase (mer) and encodes a methylenetetrahydrofolate reductase (Met). The bacterial partners contain the genes encoding the canonical dissimilatory sulfate reduction pathway. During AOM, all three consortia types highly expressed genes encoding for the formation of flagella or type IV pili and/or c‐type cytochromes, some predicted to be extracellular. ANME‐2c expressed potentially extracellular cytochromes with up to 32 hemes, whereas ANME‐1a and SRB expressed less complex cytochromes (≤ 8 and ≤ 12 heme respectively). The intercellular space of all consortia showed nanowire‐like structures and heme‐rich areas. These features are proposed to enable interspecies electron exchange, hence suggesting that direct electron transfer is a common mechanism to sulfate‐dependent AOM, and that both partners synthesize molecules to enable it.  相似文献   

20.
A novel microbially diverse type of 1- to 5-cm-thick mat performing anaerobic oxidation of methane (AOM) and covering several square metres of the seafloor was discovered in the Black Sea at 180 m water depth. Contrary to other AOM-mat systems of the Black Sea these floating mats are not associated to free gas and are not stabilized by authigenic carbonates. However, supply of methane is ensured by the horizontal orientation of the mats acting as a cover of methane enriched fluids ascending from the underlying sediments. Thorough investigation of their community composition by molecular microbiology and lipid biomarkers, metabolic activities and elemental composition showed that the mats provide a clearly structured system with extracellular polymeric substances (EPS) building the framework of the mats. The top black zone, showing high rates of AOM (15 μmol  gdw−1 day−1), was dominated by ANME-2, while the following equally active pink layer was dominated by ANME-1 Archaea . The lowest AOM activity (2 μmol  gdw−1 day−1) and cell numbers were found in the greyish middle part delimited towards the sediment by a second pink, ANME-1-dominated and sometimes a black outer layer (ANME-2). Our work clearly shows that the different microbial populations are established along defined chemical gradients such as methane, sulfate or sulfide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号