共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Per Jemth Xin Mu ?ke Engstr?m Jakob Dogan 《The Journal of biological chemistry》2014,289(9):5528-5533
Intrinsically disordered proteins are very common in the eukaryotic proteome, and many of them are associated with diseases. Disordered proteins usually undergo a coupled binding and folding reaction and often interact with many different binding partners. Using double mutant cycles, we mapped the energy landscape of the binding interface for two interacting disordered domains and found it to be largely suboptimal in terms of interaction free energies, despite relatively high affinity. These data depict a frustrated energy landscape for interactions involving intrinsically disordered proteins, which is likely a result of their functional promiscuity. 相似文献
4.
Cytoplasmic dynein is a 1.2-MDa multisubunit motor protein complex that, together with its activator dynactin, is responsible for the majority of minus end microtubule-based motility. Dynactin targets dynein to specific cellular locations, links dynein to cargo, and increases dynein processivity. These two macromolecular complexes are connected by a direct interaction between dynactin's largest subunit, p150(Glued), and dynein intermediate chain (IC) subunit. Here, we demonstrate using NMR spectroscopy and isothermal titration calorimetry that the binding footprint of p150(Glued) on IC involves two noncontiguous recognition regions, and both are required for full binding affinity. In apo-IC, the helical structure of region 1, the nascent helix of region 2, and the disorder in the rest of the chain are determined from coupling constants, amide-amide sequential NOEs, secondary chemical shifts, and various dynamics measurements. When bound to p150(Glued), different patterns of spectral exchange broadening suggest that region 1 forms a coiled-coil and region 2 a packed stable helix, with the intervening residues remaining disordered. In the 150-kDa complex of p150(Glued), IC, and two light chains, the noninterface segments remain disordered. The multiregion IC binding interface, the partial disorder of region 2 and its potential for post-translational modification, and the modulation of the length of the longer linker by alternative splicing may provide a basis for elegant and multifaceted regulation of binding between IC and p150(Glued). The long disordered linker between the p150(Glued) binding segments and the dynein light chain consensus sequences could also provide an attractive recognition platform for diverse cargoes. 相似文献
5.
The functional diversity of cytoplasmic dynein is in part attributed to multiple interactions between noncatalytic dynein subunits and an array of regulatory proteins. This study focuses on the interaction between the dynein intermediate chain subunit (IC) and a dynein regulator protein (NudE). We use isothermal titration calorimetry and NMR spectroscopy to map their interacting sections to their respective N-terminal domains, which are predicted to form dimeric coiled-coils. Interestingly, the specific residues within IC that interact with NudE are a subset of the bi-segmental binding region reported for p150(Glued), a subunit of the dynein activator protein dynactin. Although the IC binding domains of both NudE and p150(Glued) form dimeric coiled-coils and bind IC at a common site, we observe distinct binding modes for each regulatory protein: 1) NudE binds region 1 of the bi-segmental binding footprint of p150(Glued), whereas p150(Glued) requires regions 1 and 2 to match the binding affinity of NudE with region 1 alone. 2) Compared with unbound IC, NudE-bound IC shows a slight increase in flexibility in region 2, in contrast to the increase in ordered structure observed for p150(Glued)-bound IC (Morgan, J. L., Song, Y., and Barbar, E. (2011) J. Biol. Chem. 286, 39349-39359). 3) Although NudE has a higher affinity for the common binding segment on IC, when all three proteins are in solution, IC preferentially binds p150(Glued). These results underscore the importance of a bi-segmental binding region of IC and disorder in region 2 and flanking linkers in selecting which regulatory protein binds IC. 相似文献
6.
Adam R. Offenbacher Brandon C. Polander Bridgette A. Barry 《The Journal of biological chemistry》2013,288(40):29056-29068
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global 13C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster. 相似文献
7.
8.
Plant photoreceptors transduce environmental light cues to downstream signaling pathways, regulating a wide array of processes during growth and development. Two major plant photoreceptors with critical roles in photomorphogenesis are phytochrome B (phyB), a red/far-red absorbing photoreceptor, and cryptochrome 1 (CRY1), a UV-A/blue photoreceptor. Despite substantial genetic evidence for cross-talk between phyB and CRY1 pathways, a direct interaction between these proteins has not been observed. Here, we report that Arabidopsis phyB interacts directly with CRY1 in a light-dependent interaction. Surprisingly, the interaction is light-dissociated; CRY1 interacts specifically with the dark/far-red (Pr) state of phyB, but not with the red light-activated (Pfr) or the chromophore unconjugated form of the enzyme. The interaction is also regulated by light activation of CRY1; phyB Pr interacts only with the unstimulated form of CRY1 but not with the photostimulated protein. Further studies reveal that a small domain extending from the photolyase homology region (PHR) of CRY1 regulates the specificity of the interaction with different conformational states of phyB. We hypothesize that in plants, the phyB/CRY1 interaction may mediate cross-talk between the red/far-red- and blue/UV-sensing pathways, enabling fine-tuning of light responses to different spectral inputs. 相似文献
9.
Judit Perales-Calvo Arturo Muga Fernando Moro 《The Journal of biological chemistry》2010,285(44):34231-34239
DnaJ from Escherichia coli is a Type I Hsp40 that functions as a cochaperone of DnaK (Hsp70), stimulating its ATPase activity and delivering protein substrates. How DnaJ binds protein substrates is still poorly understood. Here we have studied the role of DnaJ G/F-rich domain in binding of several substrates with different conformational properties (folded, partially (un)folded and unfolded). Using partial proteolysis we find that RepE, a folded substrate, contacts a wide DnaJ area that involves part of the G/F-rich region and Zn-binding domain. Deletion of G/F-rich region hampers binding of native RepE and reduced the affinity for partially (un)folded substrates. However, binding of completely unfolded substrates is independent on the G/F-rich region. These data indicate that DnaJ distinguishes the substrate conformation and is able to adapt the use of the G/F-rich region to form stable substrate complexes. 相似文献
10.
Mänz B Götz V Wunderlich K Eisel J Kirchmair J Stech J Stech O Chase G Frank R Schwemmle M 《The Journal of biological chemistry》2011,286(10):8414-8424
To develop a novel attenuation strategy applicable to all influenza A viruses, we targeted the highly conserved protein-protein interaction of the viral polymerase subunits PA and PB1. We postulated that impaired binding between PA and PB1 would negatively affect trimeric polymerase complex formation, leading to reduced viral replication efficiency in vivo. As proof of concept, we introduced single or multiple amino acid substitutions into the protein-protein-binding domains of either PB1 or PA, or both, to decrease binding affinity and polymerase activity substantially. As expected, upon generation of recombinant influenza A viruses (SC35M strain) containing these mutations, many pseudo-revertants appeared that partially restored PA-PB1 binding and polymerase activity. These polymerase assembly mutants displayed drastic attenuation in cell culture and mice. The attenuation of the polymerase assembly mutants was maintained in IFNα/β receptor knock-out mice. As exemplified using a H5N1 polymerase assembly mutant, this attenuation strategy can be also applied to other highly pathogenic influenza A virus strains. Thus, we provide proof of principle that targeted mutation of the highly conserved interaction domains of PA and PB1 represents a novel strategy to attenuate influenza A viruses. 相似文献
11.
Afua Nyarko Yujuan Song Ji?í Nová?ek Luká? ?ídek Elisar Barbar 《The Journal of biological chemistry》2013,288(4):2614-2622
Dyn2 is the yeast ortholog of the molecular hub LC8, which binds disordered proteins and promotes their self-association and higher order assembly. Dyn2 is proposed to dimerize and stabilize the Nup82-Nsp1-Nup159 complex of the nuclear pore assembly through its interaction with nucleoporin Nup159. Nup159 has six LC8 recognition motifs separated by short linkers. NMR experiments reported here show that the Dyn2 binding domain of Nup159 is intrinsically disordered and that binding of one equivalent of Dyn2 dimer aligns two Nup159 chains along the full Dyn2 binding domain to form a bivalent scaffold that promotes binding of other Dyn2 dimers. Isothermal titration calorimetry of Dyn2 binding to Nup constructs of increasing lengths determine that the third LC8 recognition motifs does not bind Dyn2. A new approach to identifying active LC8 recognition motifs based on NMR-detected β-sheet propensities is presented. Isothermal titration calorimetry experiments also show that, due to unfavorable entropy changes, a Nup-Dyn2 complex with three Dyn2 dimers is more stable than the wild-type complex with five Dyn2 dimers. The calorimetric results argue that, from a thermodynamics perspective, only three Dyn2 dimers are needed for optimal stability and suggest that the evolutionary adaptation of multiple tandem LC8 recognition motifs imparts to the complex other properties such as rigidity and a kink in the rod-like structure. These findings extend the repertoire of functions of intrinsically disordered protein to fine-tuning and versatile assembly of higher order macromolecular complexes. 相似文献
12.
Chi CN Bach A Engström Å Strømgaard K Lundström P Ferguson N Jemth P 《The Journal of biological chemistry》2011,286(5):3597-3606
The E6 protein of human papillomavirus (HPV) exhibits complex interaction patterns with several host proteins, and their roles in HPV-mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor suppressor protein synapse-associated protein 97 (SAP97). All of the potential binding sites in SAP97 bind E6 with micromolar affinity. The dissociation rate constants govern the different affinities of HPV16 and HPV18 E6 for SAP97. Unexpectedly, binding is not mutually exclusive, and all three PDZ domains can simultaneously bind E6. Intriguingly, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues distal to the canonical binding pocket in the PDZ(2) domain exhibited noncanonical interactions with the E6 protein. This is consistent with a larger proportion of the protein surface defining binding specificity, as compared with that reported previously. 相似文献
13.
Manuel H. Taft Elmar Behrmann Lena-Christin Munske-Weidemann Claudia Thiel Stefan Raunser Dietmar J. Manstein 《The Journal of biological chemistry》2013,288(42):30029-30041
Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton. 相似文献
14.
15.
In recent years, an increasing number of small molecules and short peptides have been identified that interfere with aggregation and/or oligomerization of the Alzheimer β-amyloid peptide (Aβ). Many of them possess aromatic moieties, suggesting a dominant role for those in interacting with Aβ along various stages of the aggregation process. In this study, we attempt to elucidate whether interactions of such aromatic inhibitors with monomeric Aβ(12-28) point to a common mechanism of action by performing atomistic molecular dynamics simulations at equilibrium. Our results suggest that, independently of the presence of inhibitors, monomeric Aβ(12-28) populates a partially collapsed ensemble that is largely devoid of canonical secondary structure at 300 K and neutral pH. The small molecules have different affinities for Aβ(12-28) that can be partially rationalized by the balance of aromatic and charged moieties constituting the molecules. There are no predominant binding modes, although aggregation inhibitors preferentially interact with the N-terminal portion of the fragment (residues 13-20). Analysis of the free energy landscape of Aβ(12-28) reveals differences highlighted by altered populations of a looplike conformer in the presence of inhibitors. We conclude that intrinsic disorder of Aβ persists at the level of binding small molecules and that inhibitors can significantly alter properties of monomeric Aβ via multiple routes of differing specificity. 相似文献
16.
17.
Conformational selection and folding-upon-binding of intrinsically disordered protein CP12 regulate photosynthetic enzymes assembly 总被引:1,自引:0,他引:1
Fermani S Trivelli X Sparla F Thumiger A Calvaresi M Marri L Falini G Zerbetto F Trost P 《The Journal of biological chemistry》2012,287(25):21372-21383
Carbon assimilation in plants is regulated by the reduction of specific protein disulfides by light and their re-oxidation in the dark. The redox switch CP12 is an intrinsically disordered protein that can form two disulfide bridges. In the dark oxidized CP12 forms an inactive supramolecular complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase, two enzymes of the carbon assimilation cycle. Here we show that binding of CP12 to GAPDH, the first step of ternary complex formation, follows an integrated mechanism that combines conformational selection with induced folding steps. Initially, a CP12 conformation characterized by a circular structural motif including the C-terminal disulfide is selected by GAPDH. Subsequently, the induced folding of the flexible C-terminal tail of CP12 in the active site of GAPDH stabilizes the binary complex. Formation of several hydrogen bonds compensates the entropic cost of CP12 fixation and terminates the interaction mechanism that contributes to carbon assimilation control. 相似文献
18.
Yap TL Gruschus JM Velayati A Westbroek W Goldin E Moaven N Sidransky E Lee JC 《The Journal of biological chemistry》2011,286(32):28080-28088
The presynaptic protein α-synuclein (α-syn), particularly in its amyloid form, is widely recognized for its involvement in Parkinson disease (PD). Recent genetic studies reveal that mutations in the gene GBA are the most widespread genetic risk factor for parkinsonism identified to date. GBA encodes for glucocerebrosidase (GCase), the enzyme deficient in the lysosomal storage disorder, Gaucher disease (GD). In this work, we investigated the possibility of a physical linkage between α-syn and GCase, examining both wild type and the GD-related N370S mutant enzyme. Using fluorescence and nuclear magnetic resonance spectroscopy, we determined that α-syn and GCase interact selectively under lysosomal solution conditions (pH 5.5) and mapped the interaction site to the α-syn C-terminal residues, 118-137. This α-syn-GCase complex does not form at pH 7.4 and is stabilized by electrostatics, with dissociation constants ranging from 1.2 to 22 μm in the presence of 25 to 100 mm NaCl. Intriguingly, the N370S mutant form of GCase has a reduced affinity for α-syn, as does the inhibitor conduritol-β-epoxide-bound enzyme. Immunoprecipitation and immunofluorescence studies verified this interaction in human tissue and neuronal cell culture, respectively. Although our data do not preclude protein-protein interactions in other cellular milieux, we suggest that the α-syn-GCase association is favored in the lysosome, and that this noncovalent interaction provides the groundwork to explore molecular mechanisms linking PD with mutant GBA alleles. 相似文献
19.
Ozawa D Kaji Y Yagi H Sakurai K Kawakami T Naiki H Goto Y 《The Journal of biological chemistry》2011,286(12):10856-10863
Mutations in keratoepithelin are associated with blinding ocular diseases, including lattice corneal dystrophy type 1 and granular corneal dystrophy type 2. These diseases are characterized by deposits of amyloid fibrils and/or granular non-amyloid aggregates in the cornea. Removing the deposits in the cornea is important for treatment. Previously, we reported the destruction of amyloid fibrils of β(2)-microglobulin K3 fragments and amyloid β by laser irradiation coupled with the binding of an amyloid-specific thioflavin T. Here, we studied the effects of this combination on the amyloid fibrils of two 22-residue fragments of keratoepithelin. The direct observation of individual amyloid fibrils was performed in real time using total internal reflection fluorescence microscopy. Both types of amyloid fibrils were broken up by the laser irradiation, dependent on the laser power. The results suggest the laser-induced destruction of amyloid fibrils to be a useful strategy for the treatment of these corneal dystrophies. 相似文献
20.
Petra H?nzelmann Julian Stingele Kay Hofmann Hermann Schindelin Shahri Raasi 《The Journal of biological chemistry》2010,285(26):20390-20398
Proteins containing ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains interact with various binding partners and function as hubs during ubiquitin-mediated protein degradation. A common interaction of the budding yeast UBL-UBA proteins Rad23 and Dsk2 with the E4 ubiquitin ligase Ufd2 has been described in endoplasmic reticulum-associated degradation among other pathways. The UBL domains of Rad23 and Dsk2 play a prominent role in this process by interacting with Ufd2 and different subunits of the 26 S proteasome. Here, we report crystal structures of Ufd2 in complex with the UBL domains of Rad23 and Dsk2. The N-terminal UBL-interacting region of Ufd2 exhibits a unique sequence pattern, which is distinct from any known ubiquitin- or UBL-binding domain identified so far. Residue-specific differences exist in the interactions of these UBL domains with Ufd2, which are coupled to subtle differences in their binding affinities. The molecular details of their differential interactions point to a role for adaptive evolution in shaping these interfaces. 相似文献