首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
2.
3.
Yao XQ  Li XC  Zhang XX  Yin YY  Liu B  Luo DJ  Wang Q  Wang JZ  Liu GP 《FEBS letters》2012,586(16):2522-2528
Protein phosphatase-2A (PP2A) activity is significantly suppressed in Alzheimer's disease. We have reported that glycogen synthase kinase-3β (GSK-3β) inhibits PP2A via upregulating the phosphorylation of PP2A catalytic subunit (PP2A(C)). Here we studied the effects of GSK-3β on the inhibitory demethylation of PP2A at leucine-309 (dmL309-PP2A(C)). We found that GSK-3β regulates dmL309-PP2A(C) level by regulating PME-1 and PPMT1. Knockdown of PME-1 or PPMT1 eliminated the effects of GSK-3β on PP2A(C). GSK-3 could negatively regulate PP2A regulatory subunit protein level. We conclude that GSK-3β can inhibit PP2A by increasing the inhibitory L309-demethylation involving upregulation of PME-1 and inhibition of PPMT1.  相似文献   

4.
Simian virus 40 (SV40) large-T antigen and the cellular protein p53 were phosphorylated in vivo by growing cells in the presence of 32Pi. The large-T/p53 complex was isolated by immunoprecipitation and used as a substrate for protein phosphatase 2A (PP2A) consisting of the catalytic subunit (C) and the two regulatory subunits, A and B. Three different purified forms of PP2A, including free C, the AC form, and the ABC form, could readily dephosphorylate both proteins. With both large-T and p53, the C subunit was most active, followed by the AC form, which was more active than the ABC form. The activity of all three forms of PP2A toward these proteins was strongly stimulated by manganese ions and to a lesser extent by magnesium ions. The presence of complexed p53 did not affect the dephosphorylation of large-T antigen by PP2A. The dephosphorylation of individual phosphorylation sites of large-T and p53 were determined by two-dimensional peptide mapping. Individual sites within large-T and p53 were dephosphorylated at different rates by all three forms of PP2A. The phosphates at Ser-120 and Ser-123 of large-T, which affect binding to the origin of SV40 DNA, were removed most rapidly. Three of the six major phosphopeptides of p53 were readily dephosphorylated, while the remaining three were relatively resistant to PP2A. Dephosphorylation of most of the sites in large-T and p53 by the AC form was inhibited by SV40 small-t antigen. The inhibition was most apparent for those sites which were preferentially dephosphorylated. Inhibition was specific for the AC form; no effect was observed on the dephosphorylation of either protein by the free C subunit or the ABC form. The inhibitory effect of small-t on dephosphorylation by PP2A could explain its role in transformation.  相似文献   

5.
Okadaic acid (OA) is a protein phosphatase (PP) inhibitor and induces hyperphosphorylation of p53. We investigated whether the inhibition of PP1 by OA promotes the phosphorylation of the serine 15 of p53. In vitro dephosphorylation assay showed that PP1 dephosphorylated ultraviolet C (UVC)-induced phospho-ser15 of p53, and that OA treatment inhibited it. One of the PP1 regulators, growth arrest and DNA damage 34 (GADD34), disturbed PP1 binding with p53, interfered with the dephosphorylation of p53 and increased the amount of phospho-p53 after UVC-treatment. This report provides the first evidence that PP1, but not PP2A, dephosphorylates phospho-serine 15 of p53.  相似文献   

6.
7.
The protein phosphatase 2A (PP2A) acts on several kinases in the extracellular signal-regulated kinase (ERK) signaling pathway but whether a specific holoenzyme dephosphorylates ERK and whether this activity is controlled during mitogenic stimulation is unknown. By using both RNA interference and overexpression of PP2A B regulatory subunits, we show that B56, but not B, family members of PP2A increase ERK dephosphorylation, without affecting its activation by MEK. Induction of the early gene product and ERK substrate IEX-1 (ier3) by growth factors leads to opposite effects and reverses B56-PP2A-mediated ERK dephosphorylation. IEX-1 binds to B56 subunits and pERK independently, enhances B56 phosphorylation by ERK at a conserved Ser/Pro site in this complex and triggers dissociation from the catalytic subunit. This is the first demonstration of the involvement of B56-containing PP2A in ERK dephosphorylation and of a B56-specific cellular protein inhibitor regulating its activity in an ERK-dependent fashion. In addition, our results raise a new paradigm in ERK signaling in which ERK associated to a substrate can transphosphorylate nearby proteins.  相似文献   

8.
Li HH  Cai X  Shouse GP  Piluso LG  Liu X 《The EMBO journal》2007,26(2):402-411
Protein phosphatase 2A (PP2A) has been implicated to exert its tumor suppressive function via a small subset of regulatory subunits. In this study, we reported that the specific B regulatory subunits of PP2A B56gamma1 and B56gamma3 mediate dephosphorylation of p53 at Thr55. Ablation of the B56gamma protein by RNAi, which abolishes the Thr55 dephosphorylation in response to DNA damage, reduces p53 stabilization, Bax expression and cell apoptosis. To investigate the molecular mechanisms, we have shown that the endogenous B56gamma protein level and association with p53 increase after DNA damage. Finally, we demonstrate that Thr55 dephosphorylation is required for B56gamma3-mediated inhibition of cell proliferation and cell transformation. These results suggest a molecular mechanism for B56gamma-mediated tumor suppression and provide a potential route for regulation of B56gamma-specific PP2A complex function.  相似文献   

9.
Akt mediates important cellular decisions involved in growth, survival, and metabolism. The mechanisms by which Akt is phosphorylated and activated in response to growth factors or insulin have been extensively studied, but the molecular regulatory components and dynamics of Akt attenuation are poorly understood. Here we show that a downstream target of insulin-induced Akt activation, Clk2, triggers Akt dephosphorylation through the PP2A phosphatase complex. Clk2 phosphorylates the PP2A regulatory subunit B56β (PPP2R5B, B'β), which is a critical regulatory step in the assembly of the PP2A holoenzyme complex on Akt leading to dephosphorylation of both S473 and T308 Akt sites. Since Akt plays a pivotal role in cellular signaling, these results have important implications for our understanding of Akt regulation in many biological processes.  相似文献   

10.
11.
Lu B  Ma CH  Brazas R  Jin H 《Journal of virology》2002,76(21):10776-10784
The phosphoprotein (P protein) of respiratory syncytial virus (RSV) is a key component of the viral RNA-dependent RNA polymerase complex. The protein is constitutively phosphorylated at the two clusters of serine residues (116, 117, and 119 [116/117/119] and 232 and 237 [232/237]). To examine the role of phosphorylation of the RSV P protein in virus replication, these five serine residues were altered to eliminate their phosphorylation potential, and the mutant proteins were analyzed for their functions with a minigenome assay. The reporter gene expression was reduced by 20% when all five phosphorylation sites were eliminated. Mutants with knockout mutations at two phosphorylation sites (S232A/S237A [PP2]) and at five phosphorylation sites (S116L/S117R/S119L/S232A/S237A [PP5]) were introduced into the infectious RSV A2 strain. Immunoprecipitation of (33)P(i)-labeled infected cells showed that P protein phosphorylation was reduced by 80% for rA2-PP2 and 95% for rA2-PP5. The interaction between the nucleocapsid (N) protein and P protein was reduced in rA2-PP2- and rA2-PP5-infected cells by 30 and 60%, respectively. Although the two recombinant viruses replicated well in Vero cells, rA2-PP2 and, to a greater extent, rA2-PP5, replicated poorly in HEp-2 cells. Virus budding from the infected HEp-2 cells was affected by dephosphorylation of P protein, because the majority of rA2-PP5 remained cell associated. In addition, rA2-PP5 was also more attenuated than rA2-PP2 in replication in the respiratory tracts of mice and cotton rats. Thus, our data suggest that although the major phosphorylation sites of RSV P protein are dispensable for virus replication in vitro, phosphorylation of P protein is required for efficient virus replication in vitro and in vivo.  相似文献   

12.
The importance of PP2A in the regulation of Akt/PKB activity has long been recognized but the nature of the holoenzyme involved and the mechanisms controlling dephosphorylation are not yet known. We identified IEX-1, an early gene product with proliferative and survival activities, as a specific inhibitor of B56 regulatory subunit-containing PP2A. IEX-1 inhibits B56-PP2A activity by allowing the phosphorylation of B56 by ERK. This leads to sustained ERK activation. IEX-1 has no effect on PP2A containing other B family subunits. Thus, studying IEX-1 contribution to signaling should help the discovery of new pathways controlled by B56-PP2A. By using overexpression and RNA interference, we show here that IEX-1 increases Akt/PKB activity in response to various growth factors by preventing Akt dephosphorylation on both Thr(308) and Ser(473) residues. PP2A-B56beta and gamma subunits have the opposite effect and reverse IEX-1-mediated Akt activation. The effect of IEX-1 on Akt is ERK-dependent. Indeed: (i) a IEX-1 mutant deficient in ERK binding had no effect on Akt; (ii) ERK dominant-negative mutants reduced IEX-1-mediated increase in pAkt; (iii) a B56beta mutant that cannot be phosphorylated in the ERK.IEX-1 complex showed an enhanced ability to compete with IEX-1. These results identify B56-containing PP2A holoenzymes as Akt phosphatases. They suggest that IEX-1 behaves as a general inhibitor of B56 activity, enabling the control of both ERK and Akt signaling downstream of ERK.  相似文献   

13.
The phosphorylation state of pocket proteins during the cell cycle is determined at least in part by an equilibrium between inducible cyclin-dependent kinases (CDKs) and serine/threonine protein phosphatase 2A (PP2A). Two trimeric holoenzymes consisting of the core PP2A catalytic/scaffold dimer and either the B55α or PR70 regulatory subunit have been implicated in the activation of p107/p130 and pRB, respectively. While the phosphorylation state of p107 is very sensitive to forced changes of B55α levels in human cell lines, regulation of p107 in response to physiological modulation of PP2A/B55α has not been elucidated. Here we show that fibroblast growth factor 1 (FGF1), which induces maturation and cell cycle exit in chondrocytes, triggers rapid accumulation of p107-PP2A/B55α complexes coinciding with p107 dephosphorylation. Reciprocal solution-based mass spectrometric analysis identified the PP2A/B55α complex as a major component in p107 complexes, which also contain E2F/DPs, DREAM subunits, and/or cyclin/CDK complexes. Of note, p107 is one of the preferred partners of B55α, which also associates with pRB in RCS cells. FGF1-induced dephosphorylation of p107 results in its rapid accumulation in the nucleus and formation of larger complexes containing p107 and enhances its interaction with E2F4 and other p107 partners. Consistent with a key role of B55α in the rapid activation of p107 in chondrocytes, limited ectopic expression of B55α results in marked dephosphorylation of p107 while B55α knockdown results in hyperphosphorylation. More importantly, knockdown of B55α dramatically delays FGF1-induced dephosphorylation of p107 and slows down cell cycle exit. Moreover, dephosphorylation of p107 in response to FGF1 treatment results in early recruitment of p107 to the MYC promoter, an FGF1/E2F-regulated gene. Our results suggest a model in which FGF1 mediates rapid dephosphorylation and activation of p107 independently of the CDK activities that maintain p130 and pRB hyperphosphorylation for several hours after p107 dephosphorylation in maturing chondrocytes.  相似文献   

14.
GSK-3β (glycogen synthase kinase-3β), a crucial tau kinase, negatively regulates PP2A (protein phosphatase 2A), the most active tau phosphatase that is suppressed in the brain in AD (Alzheimer's disease). However, the molecular mechanism is not understood. In the present study we found that activation of GSK-3β stimulates the inhibitory phosphorylation of PP2A at Tyr307 (pY307-PP2A), whereas inhibition of GSK-3β decreased the level of pY307-PP2A both in vitro and in vivo. GSK-3β is a serine/threonine kinase that can not phosphorylate tyrosine directly, therefore we measured PTP1B (protein tyrosine phosphatase 1B) and Src (a tyrosine kinase) activities. We found that GSK-3β can modulate both PTP1B and Src protein levels, but it only inhibits PTP1B activity, with no effect on Src. Furthermore, only knockdown of PTP1B but not Src by siRNA (small interfering RNA) eliminates the effects of GSK-3β on PP2A. GSK-3β phosphorylates PTP1B at serine residues, and activation of GSK-3β reduces the mRNA level of PTP1B. Additionally, we also observed that GSK-3 negatively regulates the protein and mRNA levels of PP2A, and knockdown of CREB (cAMP-response-element-binding protein) abolishes the increase in PP2A induced by GSK-3 inhibition. The results of the present study suggest that GSK-3β inhibits PP2A by increasing the inhibitory Tyr307 phosphorylation and decreasing the expression of PP2A, and the mechanism involves inhibition of PTP1B and CREB.  相似文献   

15.
GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor   总被引:5,自引:0,他引:5  
Shi W  Sun C  He B  Xiong W  Shi X  Yao D  Cao X 《The Journal of cell biology》2004,164(2):291-300
The cascade of phosphorylation is a pivotal event in transforming growth factor beta (TGFbeta) signaling. Reversible phosphorylation regulates fundamental aspects of cell activity. TGFbeta-induced Smad7 binds to type I receptor (TGFbeta type I receptor; TbetaRI) functioning as a receptor kinase antagonist. We found Smad7 interacts with growth arrest and DNA damage protein, GADD34, a regulatory subunit of the protein phosphatase 1 (PP1) holoenzyme, which subsequently recruits catalytic subunit of PP1 (PP1c) to dephosphorylate TbetaRI. Blocking Smad7 expression by RNA interference inhibits association of GADD34-PP1c complex with TbetaRI, indicating Smad7 acts as an adaptor protein in the formation of the PP1 holoenzyme that targets TbetaRI for dephosphorylation. SARA (Smad anchor for receptor activation) enhances the recruitment PP1c to the Smad7-GADD34 complex by controlling the specific subcellular localization of PP1c. Importantly, GADD34-PP1c recruited by Smad7 inhibits TGFbeta-induced cell cycle arrest and mediates TGFbeta resistance in responding to UV light irradiation. The dephosphorylation of TbetaRI mediated by Smad7 is an effective mechanism for governing negative feedback in TGFbeta signaling.  相似文献   

16.
Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is accompanied by accumulation of reactive oxygen species. E4orf4 expression is synthetically lethal with mutants defective in mitosis, including Cdc28/Cdk1 and anaphase-promoting complex/cyclosome (APC/C) mutants. Although APC/C activity is inhibited in the presence of E4orf4, Cdc28/Cdk1 is activated and partially counteracts the E4orf4-induced cell cycle arrest. The E4orf4-PP2A complex physically interacts with the APC/C, suggesting that E4orf4 functions by directly targeting PP2A to the APC/C, thereby leading to its inactivation. Finally, we show that E4orf4 can induce G2/M arrest in mammalian cells before apoptosis, indicating that E4orf4-induced events in yeast and mammalian cells are highly conserved.  相似文献   

17.
Protein phosphatase PP4C has been implicated in the DNA damage response (DDR), but its substrates in DDR remain largely unknown. We devised a novel proteomic strategy for systematic identification of proteins dephosphorylated by PP4C and identified KRAB-domain-associated protein 1 (KAP-1) as a substrate. Ionizing radiation leads to phosphorylation of KAP-1 at S824 (via ATM) and at S473 (via CHK2). A PP4C/R3β complex interacts with KAP-1 and silencing this complex leads to persistence of phospho-S824 and phospho-S473. We identify a new role for KAP-1 in DDR by showing that phosphorylation of S473 impacts the G2/M checkpoint. Depletion of PP4R3β or expression of the phosphomimetic KAP-1 S473 mutant (S473D) leads to a prolonged G2/M checkpoint. Phosphorylation of S824 is necessary for repair of heterochromatic DNA lesions and similar to cells expressing phosphomimetic KAP-1 S824 mutant (S824D), or PP4R3β-silenced cells, display prolonged relaxation of chromatin with release of chromatin remodelling protein CHD3. Our results define a new role for PP4-mediated dephosphorylation in the DDR, including the regulation of a previously undescribed function of KAP-1 in checkpoint response.  相似文献   

18.
Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.  相似文献   

19.
Cyclin G2, together with cyclin G1 and cyclin I, defines a novel cyclin family expressed in terminally differentiated tissues including brain and muscle. Cyclin G2 expression is up-regulated as cells undergo cell cycle arrest or apoptosis in response to inhibitory stimuli independent of p53 (Horne, M., Donaldson, K., Goolsby, G., Tran, D., Mulheisen, M., Hell, J. and Wahl, A. (1997) J. Biol. Chem. 272, 12650-12661). We tested the hypothesis that cyclin G2 may be a negative regulator of cell cycle progression and found that ectopic expression of cyclin G2 induces the formation of aberrant nuclei and cell cycle arrest in HEK293 and Chinese hamster ovary cells. Cyclin G2 is primarily partitioned to a detergent-resistant compartment, suggesting an association with cytoskeletal elements. We determined that cyclin G2 and its homolog cyclin G1 directly interact with the catalytic subunit of protein phosphatase 2A (PP2A). An okadaic acid-sensitive (<2 nm) phosphatase activity coprecipitates with endogenous and ectopic cyclin G2. We found that cyclin G2 also associates with various PP2A B' regulatory subunits, as previously shown for cyclin G1. The PP2A/A subunit is not detectable in cyclin G2-PP2A-B'-C complexes. Notably, cyclin G2 colocalizes with both PP2A/C and B' subunits in detergent-resistant cellular compartments, suggesting that these complexes form in living cells. The ability of cyclin G2 to inhibit cell cycle progression correlates with its ability to bind PP2A/B' and C subunits. Together, our findings suggest that cyclin G2-PP2A complexes inhibit cell cycle progression.  相似文献   

20.
The synthesis of the lipid carrier undecaprenyl phosphate (C(55)-P) requires the dephosphorylation of its precursor, undecaprenyl pyrophosphate (C(55)-PP). The latter lipid is synthesized de novo in the cytosol and is also regenerated after its release from the C(55)-PP-linked glycans in the periplasm. In Escherichia coli the dephosphorylation of C(55)-PP was shown to involve four integral membrane proteins, BacA, and three members of the type 2 phosphatidic acid phosphatase family, PgpB, YbjG, and YeiU. Here, the PgpB protein was purified to homogeneity, and its phosphatase activity was examined. This enzyme was shown to catalyze the dephosphorylation of C(55)-PP with a relatively low efficiency compared with diacylglycerol pyrophosphate and farnesyl pyrophosphate (C(15)-PP) lipid substrates. However, the in vitro C(55)-PP phosphatase activity of PgpB was specifically enhanced by different phospholipids. We hypothesize that the phospholipids are important determinants to ensure proper conformation of the atypical long axis C(55) carrier lipid in membranes. Furthermore, a topological analysis demonstrated that PgpB contains six transmembrane segments, a large periplasmic loop, and the type 2 phosphatidic acid phosphatase signature residues at a periplasmic location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号