共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Lee Joo-Hyoung Park Jong-Ho Park Sun-Hye Kim Sun-Hong Kim Jee Yon Min Jeong-Ki Lee Gyun Min Kim Yeon-Gu 《Applied microbiology and biotechnology》2018,102(11):4729-4739
Applied Microbiology and Biotechnology - Despite the relatively low transfection efficiency and low specific foreign protein productivity (qp) of Chinese hamster ovary (CHO) cell-based transient... 相似文献
5.
Transient gene expression in mammalian cells allows for rapid production of recombinant proteins for research and preclinical studies. Here, we describe the development of a polyethylenimine (PEI) transient transfection system using an anti‐apoptotic host cell line. The host cell line, referred to as the Double Knockout (DKO), was generated by deleting two pro‐apoptotic factors, Bax and Bak, in a CHO‐K1 cell line using zinc finger nuclease mediated gene disruption. Optimized DNA and PEI volumes for DKO transfections were 50% and 30% lower than CHO‐K1, respectively. During transfection DKO cells produced relatively high levels of lactate, but this was mitigated by a temperature shift to 31°C which further enhanced productivity. DKO cells expressed ~3‐ to 4‐fold higher antibody titers than CHO‐K1 cells. As evidence of their anti‐apoptotic properties post‐transfection, DKO cells maintained higher viability and had reduced levels of active caspase‐3 compared to CHO‐K1 cells. Nuclear plasmid DNA copy numbers and message levels were significantly elevated in DKO cells. Although DNA uptake levels, as early as 40 min post‐transfection, were higher in DKO cells this was not due to differences in cell surface heparan sulfate (HS) or initial endocytosis mechanism as both cell types utilized caveolae‐ and clathrin‐mediated endocytosis to internalize DNA:PEI complexes. These results suggest that the increased transfection efficiency and titers from DKO cells are attributed to their resistance to transfection‐induced apoptosis and not differences in endocytosis mechanism. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1050–1058, 2013 相似文献
6.
A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. 总被引:4,自引:0,他引:4
Fleshy fruits represent a very important economic resource and, therefore, they are an ideal target for biotechnological ameliorations. However, because of their physiological and anatomical characteristics, ripe fleshy fruits represent an extremely difficult material for transient gene expression assays aimed at the study of gene promoters in a short time. To this purpose, a fast and efficient Agrobacterium-mediated transient gene expression system was developed for ripe fleshy fruits. A beta-glucuronidase reporter gene interrupted by an intron was used in order to prevent the possible expression of GUS activity by the Agrobacterium cells. The contemporary use of another reporter gene was used to check the transformation efficiency. This method is based on the injection of an Agrobacterium suspension into the fruits, and allows both qualitative and quantitative assays in a wide range of fruits to be carried out. 相似文献
7.
8.
Serum-free large-scale transient transfection of CHO cells 总被引:11,自引:0,他引:11
Derouazi M Girard P Van Tilborgh F Iglesias K Muller N Bertschinger M Wurm FM 《Biotechnology and bioengineering》2004,87(4):537-545
To date, methods for large-scale transient gene expression (TGE) in cultivated mammalian cells have focused on two transfection vehicles: polyethylenimine (PEI) and calcium phosphate (CaPi). Both have been shown to result in high transfection efficiencies at scales beyond 10 L. Unfortunately, both approaches yield higher levels of recombinant protein (r-protein) in the presence of serum than in its absence. Since serum is a major cost factor and an obstacle to protein purification, our goal was to develop a large-scale TGE process for Chinese hamster ovary (CHO) cells in the absence of serum. CHO-DG44 cells were cultivated and transfected in a chemically defined medium using linear 25 kDa PEI as a transfection vehicle. Parameters that were optimized included the DNA amount, the DNA-to-PEI ratio, the timing and solution conditions for complex formation, the transfection medium, and the cell density at the time of transfection. The highest levels of r-protein expression were observed when cultures at a density of 2.0 x 10(6) cells/ml were transfected with 2.5 microg/ml DNA in RPMI 1640 medium containing 25 mM HEPES at pH 7.1. The transfection complex was formed at a DNA:PEI ratio of 1:2 (w/w) in 150 mM NaCl with a 10-min incubation at room temperature prior to addition to the culture. The procedure was scaled up for a 20-L bioreactor, yielding expression levels of 10 相似文献
9.
10.
The use of animal cells such as Chinese hamster ovary (CHO) cells for recombinant gene expression provides many advantageous features such as proper folding and post-translational modification of the recombinant protein. However, recombinant genes introduced into animal cells are often expressed at low levels mainly due to position effects from the neighboring chromatin context. The tedious and time-consuming selection and amplification procedure has been the major hurdle for using animal cell line such as CHO cells. To improve mammalian cell expression systems, we screened a variety of matrix/scaffold attachment region (MAR/SAR) elements for their ability to insulate transgene expression from the position effects in CHO cells. We found that the human beta-globin MAR element is particularly effective as the frequency of beta-Gal positive colonies was increased by up to 80%. The expression levels of these colonies were also enhanced about seven-fold. These improvements appear to be related to the increased copy numbers and a higher efficiency of expression of the integrated genes. When this element was used to express soluble TGF-beta type II receptor (sTbetaRII) through the gene amplification system, the frequency of colonies expressing detectable amounts of sTbetaRII was much higher than that of the control vector. We could also generate high sTbetaRII producers with uniform growth properties by a simple two-step amplification process involving two concentrations of methotrexate. This eliminates the need to isolate individual colonies followed by multi-step treatments of methotrexate and thereby greatly simplifies this mammalian expression system. 相似文献
11.
Wei-wei Li Shao-jiao Liu Yan-tian Chen Chen Zheng Nian-min Qi 《Process Biochemistry》2013,48(10):1572-1580
In this study, a continuous culture system was applied to mammalian cells on large scale, and polyethyleneimine (PEI) mediated transient gene expression (TGE). PEI MAX 40,000 was chosen as a superior reagent from three types of PEI. The cell cycle distribution of cells in batch and continuous cultures was determined, in which the effects of cell cycle distribution on transfection efficiency, post-transfection proliferation and recombinant prothrombin expression were evaluated. Compared with cells from end-log and plateau phase in batch culture, cells from mid-log phase possessed a larger fraction of S and G2/M phase cells and a smaller fraction of G1 phase cells. In the continuous culture, the fraction of cells in the S and G2/M phases increased and the fraction of cells in the G1/G0 phase decreased with increasing dilution rates. Cells from the continuous culture run at highest dilution rate had excellent proliferation, transfection efficiency and protein expression. These results were confirmed by transfecting cells synchronized to different phases. The G2/M arrested cells exhibited a nearly 10-fold increase in recombinant human prothrombin production relative to that of non-dividing cells. The use of continuous culture for large scale transfection demonstrated a better cell physiological state for TGE process. 相似文献
12.
Transient gene expression is frequently used in industry to rapidly generate usable quantities of a protein from cultured
cells. In gene therapy applications it is used to express a therapeutic protein in vivo. A quantitative assessment of the
expression kinetics is important because it enables optimization and control of culture conditions for higher productivity.
Previous experimental studies show a characteristic peak in average protein expression per cell after transfection followed
by an exponential decrease of the expressed protein. Here, we show that the exponential decrease in single cell expression
of enhanced Green Fluorescent Protein (eGfp) occurs in discrete steps. We attribute this to the absence of plasmid replication
and to symmetric partitioning of plasmid and eGfp between dividing cells. This is reflected in the total eGfp in the bioreactor,
which increased at a constant rate throughout the experiment. Additionally, the data provide a detailed time course of cell
physiology during recovery from electroporation. The time course of cell physiology precisely indicates when the culture shifts
growth phases. Furthermore, the data indicate two unique stationary phases. One type of stationary phase occurs when proliferation
ceases while cells decrease their cell size, maintain granularity, and mean eGfp content decreases. The second type occurs
when proliferation ceases while cells increase their cell size, increase granularity, and surprisingly maintain eGfp content.
The collected data demonstrate the utility of automated flow cytometry for unique bioreactor monitoring and control capabilities
in accordance with the US Food and Drug Administration’s Process Analytical Technology initiative. 相似文献
13.
Tonya D. Mitchell Ajmer S. Bhagsari Peggy Ozias-Akins Sarwan K. Dhir 《In vitro cellular & developmental biology. Plant》1998,34(4):319-324
Summary Transient expression of the β-glucuronidase (GUS) gene has been studied in leaf-derived embryogenic callus of sweetpotatoIpomoea batatas L. (Lam.) by electroporation. The influence of several factors including electric field strength, buffer composition, time
course of transientGUS gene expression, DNA concentration, enzyme, and polyethylene glycol (PEG) treatment was examined onGUS gene expression (number of blue spots). MaximumGUS gene expression (an average of 90 blue spots/fifty mg fresh weight callus tissue) was observed after 48 h when callus pieces
were preincubated with electroporation (EPR) buffer for 1 h, followed by electroporation with a single electric pulse of 500
V/cm discharged from a 960-μF capacitor in the presence of 20 μg DNA/ml and 8.3 μl NaCl (3M). Changing the electroporation buffer conductivity (by varying the buffer composition with low-high salt concentrations),
had only slight effect on the number of blue spots. Similarly, the time course study ofGUS gene expression revealed that GUS activity could be detected 12 h after electroporation with a maximum activity after 72
h (112 blue spots). Increasing the amount of DNA from 5 to 50 μg/ml in the EPR buffer had a slight effect on the expression
frequency (from 20–110 blue spots, and 112 blue spots with 20 μg/ml). The number of blue spots was increased by enzymatic
wounding of callus pieces for 10 min and by addition of 200 μl PEG 4000 (15%) before electroporation. These results suggest
that intact cell electroporation can be used for producing transgenic sweetpotato tissue. 相似文献
14.
15.
16.
Large-scale transient gene expression (TGE) in mammalian cells is an attractive method to rapidly produce recombinant proteins for pre-clinical studies, with some processes reported to reach 100 L. However, the yield remains low, hardly over 20 mg protein/L, mainly because the current TGEs have been performed at low cell density (approximately 5 x 10(5) cells/mL). In this study, the strategy to improve TGE focuses on facilitating transfection at high cell density. A high-density perfusion culture of 293 EBNA1 cells was established in 2-L bioreactor using Freestyle 293 expression medium (Invitrogen, Singapore) to grow the cells for transfection. Transfection was then carried out at 1 x 10(7) cells/mL using polyethylenimine (PEI) as DNA carrier, at the optimized conditions of 6 microg DNA/10(7) cells and 1:3 DNA to PEI mass ratio. During the post-transfection phase, 80.8 mg/L of the model protein, EPO was obtained at day 5.5 post-transfection (130 mg total EPO production) using a fed-batch culture mode. In comparison, perfusion cultures using an enriched SFM II medium resulted in a longer post-transfection production phase (8 days), and 227 mg of EPO was produced in 10.7 L medium, showing that high-density TGE enables the production of several hundreds of milligrams of protein in a 2 L bioreactor. In addition, a protocol for economical plasmid preparation based on anion exchange was also established to satisfy TGE's demand in terms of quality and quantity. To the best of our knowledge, this is the first report of transient transfections at a high cell density of up to 1 x 10(7) cells/mL. 相似文献
17.
A transient expression assay for tissue-specific gene expression of alcohol dehydrogenase in Drosophila 总被引:12,自引:0,他引:12
The regulation of expression of the alcohol dehydrogenase gene of Drosophila was examined by injecting plasmids containing the gene directly into preblastoderm embryos and subsequently staining for alcohol dehydrogenase activity in somatic cells of larvae and adults. The alcohol dehydrogenase genes introduced in this manner were expressed normally in both adults and larvae; i.e., alcohol dehydrogenase activity was found exclusively in tissues where it would normally be expressed. Activity was found in some cells in more than 90% of all surviving third instar larvae, but not all cells which would normally express the enzyme were positive, presumably due to the random distribution of the injected DNA to the cells of the embryo. Regulated expression was not dependent on the vector used: tissue-specific expression was obtained from alcohol dehydrogenase genes inserted in the P-element vector, Carnegie-4; in pBR322; in pUC18; or in bacteriophage lambda. The bulk of the injected DNA was not integrated into the chromosome and appeared to persist throughout development as supercoiled and nicked circles. Using the procedure and in vitro mutagenesis, we were able to show that the alcohol dehydrogenase gene was expressed in a normal tissue-specific manner in larvae if there were 777 nucleotides of upstream information present. 相似文献
18.
Foreign protein production levels in two recombinant Chinese hamster ovary (CHO) cell lines were compared in cells transfected with different expression vectors. One vector pNL1 contained the gene for neomycin resistance (neo
r
) and thelacZ gene which codes for intracellular -galactosidase, with both genes controlled by the constitutive simian virus (SV40) promoter. The other vector CDG contained the amplifiabledhfr gene andlacZ gene, controlled by the constitutive SV40 and cytomegalovirus (CMV) promoters, respectively. Cell growth and -galactosidase expression were compared quantitatively after cells were selected in different concentrations of the neomycin analog G418 and methotrexate, respectively. A 62% reduction in growth rate occurred in recombinant CHO cells in which thelacZ anddhfr genes were highly amplified and expressed. In contrast, the combined effects of the unamplifiedneo
r
gene andlacZ gene expression on the growth kinetics were small. Any metabolic burden caused bylacZ gene expression, which was evaluated separately from the effect ofneo
r
gene expression, must be negligible, as higher expression of -galactosidase (1.5×10–6 units/cell) occurred in unamplified cells compared to the cells in whichlacZ was amplified by thedhfr-containing vector (3×10–7 units/cell). Thus, the main factor causing severe growth reduction (metabolic burden) in cells containing the amplifieddhfr gene system was not overexpression of -galactosidase butdhfr andlacZ gene co-amplification anddhfr gene expression. 相似文献
19.
Jianxin Ye Vanessa Kober Melanie Tellers Zubia Naji Peter Salmon Julia F. Markusen 《Biotechnology and bioengineering》2009,103(3):542-551
Chinese hamster ovary cells (CHO) have been extensively utilized as the production platform for therapeutic proteins including monoclonal antibodies in pharmaceutical industry. For early development, it would be advantageous to rapidly produce large amounts of protein in the same cell line; therefore, development of a CHO transient transfection platform with high protein expression level is highly desirable. Here, we describe the development of such a platform in CHO cells. Polyethylenimine (PEI) was used as the transfection reagent. Different media were screened for the best transfection and expression performance, and UltraCHO was chosen as the best performer. DMSO and lithium acetate (LiAc) were discovered to improve CHO transient transfection expression levels significantly. A 14‐day fed‐batch process was successfully developed to further increase production yield. With an optimized transient transfection process, we were able to express monoclonal antibody (Mab) in CHO cells at a high level, averaging 80 mg/L. The process was successfully scaled up to 10 L working volume in a 20 L wave bioreactor. As expected, the Mabs had similar glycosylation patterns in comparison to the Mabs produced from a stably transfected CHO cell line, while in contrast Mabs expressed transiently from HEK293EBNA cells differed. Biotechnol. Bioeng. 2009;103: 542–551. © 2009 Wiley Periodicals, Inc. 相似文献