共查询到20条相似文献,搜索用时 15 毫秒
1.
Alla Maloverjan Marko Piirsoo Lagle Kasak Lauri Peil Torben ?sterlund Priit Kogerman 《The Journal of biological chemistry》2010,285(39):30079-30090
The Sonic hedgehog (Shh) signaling pathway controls a variety of developmental processes and is implicated in tissue homeostasis maintenance and neurogenesis in adults. Recently, we identified Ulk3 as an active kinase able to positively regulate Gli proteins, mediators of the Shh signaling in mammals. Here, we provide several lines of evidence that Ulk3 participates in the transduction of the Shh signal also independently of its kinase activity. We demonstrate that Ulk3 through its kinase domain interacts with Suppressor of Fused (Sufu), a protein required for negative regulation of Gli proteins. Sufu blocks Ulk3 autophosphorylation and abolishes its ability to phosphorylate and positively regulate Gli proteins. We show that Shh signaling destabilizes the Sufu-Ulk3 complex and induces the release of Ulk3. We demonstrate that the Sufu-Ulk3 complex, when co-expressed with Gli2, promotes generation of the Gli2 repressor form, and that reduction of the Ulk3 mRNA level in Shh-responsive cells results in higher potency of the cells to transmit the Shh signal. Our data suggests a dual function of Ulk3 in the Shh signal transduction pathway and propose an additional way of regulating Gli proteins by Sufu, through binding to and suppression of Ulk3. 相似文献
2.
Mora-Santos M Limón-Mortés MC Giráldez S Herrero-Ruiz J Sáez C Japón MÁ Tortolero M Romero F 《The Journal of biological chemistry》2011,286(34):30047-30056
PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers. 相似文献
3.
Zhao J Wei J Mialki R Zou C Mallampalli RK Zhao Y 《The Journal of biological chemistry》2012,287(23):19105-19114
Cortactin, an actin-binding protein, is essential for cell growth and motility. We have shown that cortactin is regulated by reversible phosphorylation, but little is known regarding cortactin protein stability. Here, we show that lipopolysaccharide (LPS)-induced cortactin degradation is mediated by extracellular regulated signal kinase (ERK). LPS induces cortactin serine phosphorylation, ubiquitination, and degradation in mouse lung epithelia, an effect abrogated by ERK inhibition. Serine phosphorylation sites mutant, cortactin(S405A/S418A), enhances its protein stability. Cortactin is polyubiquitinated and degraded within the proteasome, whereas a cortactin(K79R) mutant exhibited proteolytic stability during cyclohexamide (CHX) or LPS treatment. The E3 ligase subunit β-Trcp interacts with cortactin, and its overexpression reduced cortactin protein levels, an effect attenuated by ERK inhibition. Overexpression of β-Trcp was sufficient to reduce the protective effects of exogenous cortactin on epithelial cell barrier integrity, an effect not observed after expression of a cortactin(K79R) mutant. These results provide evidence that LPS modulation of cortactin stability is coordinately regulated by stress kinases and the ubiquitin-proteasomal network. 相似文献
4.
Axin is a negative regulator of Wnt/β-catenin signaling via regulating the level of β-catenin, which is a key effector molecule. Therefore, controlling the level of Axin is a critical step for the regulation of Wnt/β-catenin signaling. It has been shown that ubiquitination-mediated proteasomal degradation may play a critical role in the regulation of Axin; however, the E3 ubiquitin ligase(s), which attaches ubiquitin to a target protein in combination with an E2 ubiquitin-conjugating enzyme, for Axin has not yet been identified. Here, we show that Smurf2 is an E3 ubiquitin ligase for Axin. Transient expression of Smurf2 down-regulated the level of Axin and increased the ubiquitination of Axin. Conversely, shRNA specific to Smurf2 blocked Axin ubiquitination. Essential domains of Axin responsible for Smurf2 interaction as well as Smurf2-mediated down-regulation and ubiquitination were identified. In vitro ubiquitination assays followed by analysis using mass spectroscopy revealed that Smurf2 specifically ubiquitinylated Lys505 of Axin and that the Axin(K505R) mutant resisted degradation. Knockdown of endogenous Smurf2 increased the level of endogenous Axin and resulted in reduced β-catenin/Tcf reporter activity. Overall, our data strongly suggest that Smurf2 is a genuine E3 ligase for Axin. 相似文献
5.
Farghaian H Turnley AM Sutherland C Cole AR 《The Journal of biological chemistry》2011,286(28):25274-25283
It is important to identify the true substrates of protein kinases because this illuminates the primary function of any kinase. Here, we used bioinformatics and biochemical validation to identify novel brain substrates of the Ser/Thr kinase glycogen synthase kinase 3 (GSK3). Briefly, sequence databases were searched for proteins containing a conserved GSK3 phosphorylation consensus sequence ((S/T)PXX(S/T)P or (S/T)PXXX(S/T)P), as well as other criteria of interest (e.g. brain proteins). Importantly, candidates were highlighted if they had previously been reported to be phosphorylated at these sites by large-scale phosphoproteomic studies. These criteria identified the brain-enriched cytoskeleton-associated protein β-adducin as a likely substrate of GSK3. To confirm this experimentally, it was cloned and subjected to a combination of cell culture and in vitro kinase assays that demonstrated direct phosphorylation by GSK3 in vitro and in cells. Phosphosites were mapped to three separate regions near the C terminus and confirmed using phosphospecific antibodies. Prior priming phosphorylation by Cdk5 enhanced phosphorylation by GSK3. Expression of wild type, but not non-phosphorylatable (GSK3 insensitive), β-adducin increased axon and dendrite elongation in primary cortical neurons. Therefore, phosphorylation of β-adducin by GSK3 promotes efficient neurite outgrowth in neurons. 相似文献
6.
Peng C Cho YY Zhu F Zhang J Wen W Xu Y Yao K Ma WY Bode AM Dong Z 《The Journal of biological chemistry》2011,286(9):6946-6954
The ribosomal S6 kinase 2 (RSK2) is a member of the p90 ribosomal S6 kinase (p90RSK) family of proteins and plays a critical role in proliferation, cell cycle, and cell transformation. Here, we report that RSK2 phosphorylates caspase-8, and Thr-263 was identified as a novel caspase-8 phosphorylation site. In addition, we showed that EGF induces caspase-8 ubiquitination and degradation through the proteasome pathway, and phosphorylation of Thr-263 is associated with caspase-8 stability. Finally, RSK2 blocks Fas-induced apoptosis through its phosphorylation of caspase-8. These data provide a direct link between RSK2 and caspase-8 and identify a novel molecular mechanism for caspase-8 modulation by RSK2. 相似文献
7.
Chong-Shan Shi Ning-Na Huang John H. Kehrl 《The Journal of biological chemistry》2012,287(40):33480-33487
The Wnt β-catenin pathway controls numerous cellular processes including cell differentiation and cell-fate decisions. Wnt ligands engage Frizzled receptors and the low-density-lipoprotein-related protein 5/6 (LRP5/6) receptor complex leading to the recruitment of Dishevelled (Dvl) and Axin1 to the plasma membrane. Axin1 has a regulator of G-protein signaling (RGS) domain that binds adenomatous polyposis coli and Gα subunits, thereby providing a mechanism by which Gα subunits can affect β-catenin levels. Here we show that Wnt signaling enhances the expression of another RGS domain-containing protein, PDZ-RGS3. Reducing PDZ-RGS3 levels impaired Wnt3a-induced activation of the canonical pathway. PDZ-RGS3 bound GSK3β and decreased its catalytic activity toward β-catenin. PDZ-RGS3 overexpression enhanced Snail1 and led to morphological and biochemical changes reminiscent of epithelial mesenchymal transition (EMT). These results indicate that PDZ-RGS3 can enhance signals generated by the Wnt canonical pathway and that plays a pivotal role in EMT. 相似文献
8.
9.
Brian T. Burmeister Domenico M. Taglieri Li Wang Graeme K. Carnegie 《The Journal of biological chemistry》2012,287(48):40535-40546
Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Our results identify a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that the tyrosine phosphatase, Shp2, is a component of the A-kinase-anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits its protein-tyrosine phosphatase activity. Given the important cardiac roles of both AKAP-Lbc and Shp2, we investigated the AKAP-Lbc-Shp2 interaction in the heart. AKAP-Lbc-tethered PKA is implicated in cardiac hypertrophic signaling; however, mechanism of PKA action is unknown. Mutations resulting in loss of Shp2 catalytic activity are also associated with cardiac hypertrophy and congenital heart defects. Our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Thus, while induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote compensatory cardiac hypertrophy. 相似文献
10.
11.
Nicolas Markadieu Kerri Rios Benjamin W. Spiller W. Hayes McDonald Paul A. Welling Eric Delpire 《The Journal of biological chemistry》2014,289(42):29273-29284
The Ste20-related kinase SPAK regulates sodium, potassium, and chloride transport in a variety of tissues. Recently, SPAK fragments, which lack the catalytic domain and are inhibitory to Na+ transporters, have been detected in kidney. It has been hypothesized that the fragments originate from alternative translation start sites, but their precise origin is unknown. Here, we demonstrate that kidney lysate possesses proteolytic cleavage activity toward SPAK. Ion exchange and size exclusion chromatography combined with mass spectrometry identified the protease as aspartyl aminopeptidase. The presence of the protease was verified in the active fractions, and recombinant aspartyl aminopeptidase recapitulated the cleavage pattern observed with kidney lysate. Identification of the sites of cleavage by mass spectrometry allowed us to test the function of the smaller fragments and demonstrate their inhibitory action toward the Na+-K+-2Cl− cotransporter, NKCC2. 相似文献
12.
MCM2-7 proteins form a stable heterohexamer with DNA helicase activity functioning in the DNA replication of eukaryotic cells. The MCM2-7 complex is loaded onto chromatin in a cell cycle-dependent manner. The phosphorylation of MCM2-7 proteins contributes to the formation of the MCM2-7 complex. However, the regulation of specific MCM phosphorylation still needs to be elucidated. In this study, we demonstrate that MCM3 is a substrate of cyclin E/Cdk2 and can be phosphorylated by cyclin E/Cdk2 at Thr-722. We find that the MCM3 T722A mutant binds chromatin much less efficiently when compared with wild type MCM3, suggesting that this phosphorylation site is involved in MCM3 loading onto chromatin. Interestingly, overexpression of MCM3, but not MCM3 T722A mutant, inhibits the S phase entry, whereas it does not affect the exit from mitosis. Knockdown of MCM3 does not affect S phase entry and progression, indicating that a small fraction of MCM3 is sufficient for normal S phase completion. These results suggest that excess accumulation of MCM3 protein onto chromatin may inhibit DNA replication. Other studies indicate that excess of MCM3 up-regulates the phosphorylation of CHK1 Ser-345 and CDK2 Thr-14. These data reveal that the phosphorylation of MCM3 contributes to its function in controlling the S phase checkpoint of cell cycle in addition to the regulation of formation of the MCM2-7 complex. 相似文献
13.
Marie Morgan-Fisher John R. Couchman Atsuko Yoneda 《The Journal of biological chemistry》2013,288(43):31229-31240
The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II interaction is controlled, we further mapped the ROCK II interaction site of CRMP-2 and examined whether phosphorylation states of CRMP-2 affected the interaction. Here, we show that an N-terminal fragment of the long CRMP-2 splice variant (CRMP-2L) alone binds ROCK II and inhibits colon carcinoma cell migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition of PI3K also reduced colocalization of ROCK II and CRMP-2 at the cell periphery in human breast carcinoma cells. Mimicking GSK3 phosphorylation of CRMP-2 significantly reduced CRMP-2 binding of recombinant full-length and catalytic domain of ROCK II. These data implicate GSK3 in the regulation of ROCK II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2. 相似文献
14.
Wim Schepers Griet Van Zeebroeck Martijn Pinkse Peter Verhaert Johan M. Thevelein 《The Journal of biological chemistry》2012,287(53):44130-44142
The readdition of an essential nutrient to starved, fermenting cells of the yeast Saccharomyces cerevisiae triggers rapid activation of the protein kinase A (PKA) pathway. Trehalase is activated 5–10-fold within minutes and has been used as a convenient reporter for rapid activation of PKA in vivo. Although trehalase can be phosphorylated and activated by PKA in vitro, demonstration of phosphorylation during nutrient activation in vivo has been lacking. We now show, using phosphospecific antibodies, that glucose and nitrogen activation of trehalase in vivo is associated with phosphorylation of Ser21 and Ser83. Unexpectedly, mutants with reduced PKA activity show constitutive phosphorylation despite reduced trehalase activation. The same phenotype was observed upon deletion of the catalytic subunits of yeast protein phosphatase 2A, suggesting that lower PKA activity causes reduced trehalase dephosphorylation. Hence, phosphorylation of trehalase in vivo is not sufficient for activation. Deletion of the inhibitor Dcs1 causes constitutive trehalase activation and phosphorylation. It also enhances binding of trehalase to the 14-3-3 proteins Bmh1 and Bmh2, suggesting that Dcs1 inhibits by preventing 14-3-3 binding. Deletion of Bmh1 and Bmh2 eliminates both trehalase activation and phosphorylation. Our results reveal that trehalase activation in vivo is associated with phosphorylation of typical PKA sites and thus establish the enzyme as a reliable read-out for nutrient activation of PKA in vivo. 相似文献
15.
16.
Sabine S. Neukamm Jennifer Ott Sascha Dammeier Rainer Lehmann Hans-Ulrich H?ring Erwin Schleicher Cora Weigert 《The Journal of biological chemistry》2013,288(23):16403-16415
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N6-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability. 相似文献
17.
Azoulay-Alfaguter I Yaffe Y Licht-Murava A Urbanska M Jaworski J Pietrokovski S Hirschberg K Eldar-Finkelman H 《The Journal of biological chemistry》2011,286(15):13470-13480
Glycogen synthase kinase-3 (GSK-3) is expressed as two isozymes α and β. They share high similarity in their catalytic domains but differ in their N- and C-terminal regions, with GSK-3α having an extended glycine-rich N terminus. Here, we undertook live cell imaging combined with molecular and bioinformatic studies to understand the distinct functions of the GSK-3 isozymes focusing on GSK-3α N-terminal region. We found that unlike GSK-3β, which shuttles between the nucleus and cytoplasm, GSK-3α was excluded from the nucleus. Deletion of the N-terminal region of GSK-3α resulted in nuclear localization, and treatment with leptomycin B resulted in GSK-3α accumulation in the nucleus. GSK-3α rapidly accumulated in the nucleus in response to calcium or serum deprivation, and accumulation was strongly inhibited by the calpain inhibitor calpeptin. This nuclear accumulation was not mediated by cleavage of the N-terminal region or phosphorylation of GSK-3α. Rather, we show that calcium-induced GSK-3α nuclear accumulation was governed by GSK-3α binding with as yet unknown calpain-sensitive protein or proteins; this binding was mediated by the N-terminal region. Bioinformatic and experimental analyses indicated that nuclear exclusion of GSK-3α was likely an exclusive characteristic of mammalian GSK-3α. Finally, we show that nuclear localization of GSK-3α reduced the nuclear pool of β-catenin and its target cyclin D1. Taken together, these data suggest that the N-terminal region of GSK-3α is responsible for its nuclear exclusion and that binding with a calcium/calpain-sensitive product enables GSK-3α nuclear retention. We further uncovered a novel link between calcium and nuclear GSK-3α-mediated inhibition of the canonical Wnt/β-catenin pathway. 相似文献
18.
Seunghyi Kook Xuanzhi Zhan Tamer S. Kaoud Kevin N. Dalby Vsevolod V. Gurevich Eugenia V. Gurevich 《The Journal of biological chemistry》2013,288(52):37332-37342
Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival. 相似文献
19.
Hanine Rafidi Francisco Mercado III Michael Astudillo William H. D. Fry Matthew Saldana Kermit L. Carraway III Colleen Sweeney 《The Journal of biological chemistry》2013,288(30):21593-21605
Lrig1 is the founding member of the Lrig family of transmembrane leucine-rich repeat proteins, which also includes Lrig2 and Lrig3. Lrig1 is a negative regulator of oncogenic receptor tyrosine kinases, including ErbB and Met receptors, and promotes receptor degradation. Lrig1 has recently emerged as both a tumor suppressor and a key regulator of epidermal and epithelial stem cell quiescence. Despite this, little is known of the mechanisms by which Lrig1 is regulated. Lrig3 was recently reported to increase ErbB receptor expression suggesting that it may function in a manner opposite to Lrig1. In this study, we explore the interaction between Lrig1 and Lrig3 and demonstrate that Lrig1 and Lrig3 functionally oppose one another. Lrig3 opposes Lrig1 negative regulatory activity and stabilizes ErbB receptors. Conversely, Lrig1 destabilizes Lrig3, limiting Lrig3''s positive effects on receptors and identifying Lrig3 as a new target of Lrig1. These studies provide new insight into the regulation of Lrig1 and uncover a complex cross-talk between Lrig1 and Lrig3. 相似文献
20.