首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein syntaxin (Syn)4 is required for biphasic insulin secretion, although how it regulates each phase remains unclear. In a screen to identify new Syn4-interacting factors, the calcium-activated F-actin-severing protein gelsolin was revealed. Gelsolin has been previously implicated as a positive effector of insulin secretion, although a molecular mechanism to underlie this function is lacking. Toward this, our in vitro binding studies showed the Syn4-gelsolin interaction to be direct and mediated by the N-terminal Ha domain (amino acid residues 39-70) of Syn4. Syn4-gelsolin complexes formed under basal conditions and dissociated upon acute glucose or KCl stimulation; nifedipine blocked dissociation. The dissociating action of secretagogues could be mimicked by expression of the N-terminal Ha domain of Syn4 fused to green fluorescent protein (GFP) (GFP-39-70). Furthermore, GFP-39-70 expression in isolated mouse islet and clonal MIN6 β-cells initiated insulin release in the absence of appropriate stimuli. Consistent with this, the inhibitory GFP-39-70 peptide also initiated Syn4 activation in the absence of stimuli. Moreover, although MIN6 β-cells expressing the GFP-39-70 peptide maintained normal calcium influx in response to KCl, KCl-stimulated insulin secretion and the triggering pathway of insulin secretion were significantly impaired. Taken together, these data support a mechanistic model for gelsolin's role in insulin exocytosis: gelsolin clamps unsolicited soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-regulated exocytosis through direct association with Syn4 in the absence of appropriate stimuli, which is relieved upon stimulus-induced calcium influx to activate gelsolin and induce its dissociation from Syn4 to facilitate insulin exocytosis.  相似文献   

2.
Yuan H  Lu Y  Huang X  He Q  Man Y  Zhou Y  Wang S  Li J 《The FEBS journal》2010,277(24):5061-5071
Defects in insulin secretion by pancreatic cells and/or decreased sensitivity of target tissues to insulin action are the key features of type 2 diabetes. It has been shown that excessive generation of reactive oxygen species (ROS) is linked to glucose-induced β-cell dysfunction. However, cellular mechanisms involved in ROS generation in β-cells and the link between ROS and glucose-induced β-cell dysfunction are poorly understood. Here, we demonstrate a key role of NADPH oxidase 2 (NOX2)-derived ROS in the deterioration of β-cell function induced by a high concentration of glucose. Sprague-Dawley rats were fed a high-fat diet for 24 weeks to induce diabetes. Diabetic rats showed increased glucose levels and elevated ROS generation in blood, but decreased insulin content in pancreatic β-cells. In vitro, increased ROS levels in pancreatic NIT-1 cells exposed to high concentrations of glucose (33.3 mmol·L(-1)) were associated with elevated expression of NOX2. Importantly, decreased glucose-induced insulin expression and secretion in NIT-1 cells could be rescued via siRNA-mediated NOX2 reduction. Furthermore, high glucose concentrations led to apoptosis of β-cells by activation of p38MAPK and p53, and dysfunction of β-cells through phosphatase and tensih homolog (PTEN)-dependent Jun N-terminal kinase (JNK) activation and protein kinase B (AKT/PKB) inhibition, which induced the translocation of forkhead box O1 and pancreatic duodenal homeobox-1, followed by reduced insulin expression and secretion. In conclusion, NOX2-derived ROS could play a critical role in high glucose-induced β-cell dysfunction through PTEN-dependent JNK activation and AKT inhibition.  相似文献   

3.
The Wnt-signaling pathway regulates β-cell functions. It is not known how the expression of endogenous Wnt-signaling molecules is regulated in β-cells. Therefore, we investigated the effect of antidiabetic drugs and glucose on the expression of Wnt-signaling molecules in β-cells. Primary islets were isolated and cultured. The expression of Wnt-signaling molecules (Wnt-4, Wnt-10b, Frizzled-4, LRP5, TCF7L2) and TNFα was analyzed by semiquantitative PCR and Western blotting. Transient transfections were carried out and proliferation assays of INS-1 β-cells performed using [(3)H]thymidine uptake and BrdU ELISA. Insulin secretion was quantified. A knockdown (siRNA) of Wnt-4 in β-cells was carried out. Exendin-4 significantly increased the expression of Wnt-4 in β-cells on the mRNA level (2.8-fold) and the protein level (3-fold) (P < 0.001). The effect was dose dependent, with strongest stimulation at 10 nM, and it was maintained after long-term stimulation over 4 wk. Addition of exd-(9-39), a GLP-1 receptor antagonist, abolished the effect of exendin-4. Treatment with glucose, insulin, or other antidiabetic drugs had no effect on the expression of any of the examined Wnt-signaling molecules. Functionally, Wnt-4 antagonized the activation of canonical Wnt-signaling in β-cells. Wnt-4 had no effect on glucose-stimulated insulin secretion or insulin gene expression. Knocking down Wnt-4 decreased β-cell proliferation to 45% of controls (P < 0.05). In addition, Wnt-4 and exendin-4 treatment decreased the expression of TNFaα mRNA in primary β-cells. These data demonstrate that stimulation with exendin-4 increases the expression of Wnt-4 in β-cells. Wnt-4 modulates canonical Wnt signaling and acts as regulator of β-cell proliferation and inflammatory cytokine release. This suggests a novel mechanism through which GLP-1 can regulate β-cell proliferation.  相似文献   

4.
Diphosphoinositol pentakisphosphate (IP7) is critical for the exocytotic capacity of the pancreatic β-cell, but its regulation by the primary instigator of β-cell exocytosis, glucose, is unknown. The high Km for ATP of the IP7-generating enzymes, the inositol hexakisphosphate kinases (IP6K1 and 2) suggests that these enzymes might serve as metabolic sensors in insulin secreting β-cells and act as translators of disrupted metabolism in diabetes. We investigated this hypothesis and now show that glucose stimulation, which increases the ATP/ADP ratio, leads to an early rise in IP7 concentration in β-cells. RNAi mediated knock down of the IP6K1 isoform inhibits both glucose-mediated increase in IP7 and first phase insulin secretion, demonstrating that IP6K1 integrates glucose metabolism and insulin exocytosis. In diabetic mouse islets the deranged ATP/ADP levels under both basal and glucose-stimulated conditions are mirrored in both disrupted IP7 generation and insulin release. Thus the unique metabolic sensing properties of IP6K1 guarantees appropriate concentrations of IP7 and thereby both correct basal insulin secretion and intact first phase insulin release. In addition, our data suggest that a specific cell signaling defect, namely, inappropriate IP7 generation may be an essential convergence point integrating multiple metabolic defects into the commonly observed phenotype in diabetes.  相似文献   

5.
Glucose-induced insulin secretion from pancreatic β-cells depends on mitochondrial activation. In the organelle, glucose-derived pyruvate is metabolised along the oxidative and anaplerotic pathway to generate downstream signals leading to insulin granule exocytosis. Entry into the oxidative pathway is catalysed by pyruvate dehydrogenase (PDH) and controlled in part by phosphorylation of the PDH E1α subunit blocking enzyme activity. We find that glucose but not other nutrient secretagogues induce PDH E1α phosphorylation in INS-1E cells and rat islets. INS-1E cells and primary β-cells express pyruvate dehydrogenase kinase (PDK) 1, 2 and 3, which mediate the observed phosphorylation. In INS-1E cells, suppression of the two main isoforms, PDK1 and PDK3, almost completely prevented PDH E1α phosphorylation. Under basal glucose conditions, phosphorylation was barely detectable and therefore the enzyme almost fully active (90% of maximal). During glucose stimulation, PDH is only partially inhibited (to 78% of maximal). Preventing PDH phosphorylation in situ after suppression of PDK1, 2 and 3 neither enhanced pyruvate oxidation nor insulin secretion. In conclusion, although glucose stimulates E1α phosphorylation and therefore inhibits PDH activity, this control mechanism by itself does not alter metabolism-secretion coupling in INS-1E clonal β-cells.  相似文献   

6.
The molecular basis for the interaction of insulin granules with the cortical cytoskeleton of pancreatic β-cells remains unknown. We have proposed that binding of the granule protein ICA512 to the PDZ domain of β2-syntrophin anchors granules to actin filaments and that the phosphorylation/dephosphorylation of β2-syntrophin regulates this association. Here we tested this hypothesis by analyzing INS-1 cells expressing GFP-β2-syntrophin through the combined use of biochemical approaches, imaging studies by confocal and total internal reflection fluorescence microscopy as well as electron microscopy. Our results support the notion that β2-syntrophin restrains the mobility of cortical granules in insulinoma INS-1 cells, thereby reducing insulin secretion and increasing insulin stores in resting cells, while increasing insulin release upon stimulation. Using mass spectrometry, in vitro phosphorylation assays and β2-syntrophin phosphomutants we found that phosphorylation of β2-syntrophin on S75 near the PDZ domain decreases its binding to ICA512 and correlates with increased granule motility, while phosphorylation of S90 has opposite effects. We further show that Cdk5, which regulates insulin secretion, phosphorylates S75. These findings provide mechanistic insight into how stimulation displaces insulin granules from cortical actin, thus promoting their motility and exocytosis.  相似文献   

7.
Collectrin is a novel target gene of hepatocyte nuclear factor-1α in pancreatic β-cells and controls insulin exocytosis. Although glucose is known to stimulate the expression of genes of the insulin secretory pathway, there is no information on how glucose regulates collectrin expression. We investigated the effects of glucose on the expression of collectrin in MIN6 β-cell line. Glucose, in a dose-dependent manner, increased collectrin protein levels without changing collectrin mRNA levels and protein stability, indicating that glucose stimulation of collectrin protein expression is primarily mediated at a translational level. Although mannose and pyruvate also increased collectrin protein expression level, neither 2-deoxyglucose, mitochondrial fuels leucine and glutamate, sulphonylurea nor Ca2+ channel blockers, mimicked the effects of glucose. These data indicate the involvement of mitochondrial TCA cycle intermediates, distal to pyruvate, in the regulation of collectrin protein expression in β-cells.  相似文献   

8.
Secretory granules of pancreatic β-cells contain high concentrations of Ca2+ ions that are co-released with insulin in the extracellular milieu upon activation of exocytosis. As a consequence, an increase in the extracellular Ca2+ concentration ([Ca2+]ext) in the microenvironment immediately surrounding β-cells should be expected following the exocytotic event. Using Ca2+-selective microelectrodes we show here that both high glucose and non-nutrient insulinotropic agents elicit a reversible increase of [Ca2+]ext within rat insulinoma (INS-1E) β-cells pseudoislets. The glucose-induced increases in [Ca2+]ext are blocked by pretreatment with different Ca2+ channel blockers. Physiological agonists acting as positive or negative modulators of the insulin secretion and drugs known to intersect the secretory machinery at different levels also induce [Ca2+]ext changes as predicted on the basis of their described action on insulin secretion. Finally, the glucose-induced [Ca2+]ext increase is strongly inhibited after disruption of the actin web, indicating that the dynamic [Ca2+]ext changes recorded in INS-1E pseudoislets by Ca2+-selective microelectrodes occur mainly as a consequence of exocytosis of Ca2+-rich granules. In conclusion, our data directly demonstrate that the extracellular spaces surrounding β-cells constitute a restricted domain where Ca2+ is co-released during insulin exocytosis, creating the basis for an autocrine/paracrine cell-to-cell communication system via extracellular Ca2+ sensors.  相似文献   

9.
Insulin secretory granules are β-cell vesicles dedicated to insulin processing, storage, and release. The secretion of insulin secretory granule content in response to an acute increase of glucose concentration is a highly regulated process allowing normal glycemic homeostasis. Type 2 diabetes is a metabolic disease characterized by chronic hyperglycemia. The consequent prolonged glucose exposure is known to exert deleterious effects on the function of various organs, notably impairment of insulin secretion by pancreatic β-cells and induction of apoptosis. It has also been described as modifying gene and protein expression in β-cells. Therefore, we hypothesized that a modulation of insulin secretory granule protein expression induced by chronic hyperglycemia may partially explain β-cell dysfunction. To identify the potential early molecular mechanisms underlying β-cell dysfunction during chronic hyperglycemia, we performed SILAC and mass spectrometry experiments to monitor changes in the insulin secretory granule proteome from INS-1E rat insulinoma β-cells cultivated either with 11 or 30 mm of glucose for 24 h. Fourteen proteins were found to be differentially expressed between these two conditions, and several of these proteins were not described before to be present in β-cells. Among them, neuronal pentraxin 1 was only described in neurons so far. Here we investigated its expression and intracellular localization in INS-1E cells. Furthermore, its overexpression in glucotoxic conditions was confirmed at the mRNA and protein levels. According to its role in hypoxia-ischemia-induced apoptosis described in neurons, this suggests that neuronal pentraxin 1 might be a new β-cell mediator in the AKT/GSK3 apoptotic pathway. In conclusion, the modification of specific β-cell pathways such as apoptosis and oxidative stress may partially explain the impairment of insulin secretion and β-cell failure, observed after prolonged exposure to high glucose concentrations.  相似文献   

10.
Fast neurotransmission and slower hormone release share the same core fusion machinery consisting of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. In evoked neurotransmission, interactions between SNAREs and the Munc18-1 protein, a member of the Sec1/Munc18 (SM) protein family, are essential for exocytosis, whereas other SM proteins are dispensable. To address if the exclusivity of Munc18-1 demonstrated in neuroexocytosis also applied to fast insulin secretion, we characterized the presence and function of Munc18-1 and its closest homologue Munc18-2 in β-cell stimulus-secretion coupling. We show that pancreatic β-cells express both Munc18-1 and Munc18-2. The two Munc18 homologues exhibit different subcellular localization, and only Munc18-1 redistributes in response to glucose stimulation. However, both Munc18-1 and Munc18-2 augment glucose-stimulated hormone release. Ramp-like photorelease of caged Ca(2+) and high resolution whole-cell patch clamp recordings show that Munc18-1 and Munc18-2 overexpression shift the Ca(2+) sensitivity of the fastest phase of insulin exocytosis differently. In addition, we reveal that Ca(2+) sensitivity of exocytosis in β-cells depends on the phosphorylation status of the Munc18 proteins. Even though Munc18-1 emerges as the key SM-protein determining the Ca(2+) threshold for triggering secretory activity in a stimulated β-cell, Munc18-2 has the ability to increase Ca(2+) sensitivity and thus mediates the release of fusion-competent granules requiring a lower cytoplasmic-free Ca(2+) concentration, [Ca(2+)](i)(.) Hence, Munc18-1 and Munc18-2 display distinct subcellular compartmentalization and can coordinate the insulin exocytotic process differently as a consequence of the actual [Ca(2+)](i).  相似文献   

11.
The widely expressed Sec/Munc18 (SM) protein Munc18c is required for SNARE-mediated insulin granule exocytosis from islet beta cells and GLUT4 vesicle exocytosis in skeletal muscle and adipocytes. Although Munc18c function is known to involve binding to the t-SNARE Syntaxin 4, a paucity of Munc18c-binding proteins has restricted elucidation of the mechanism by which it facilitates these exocytosis events. Toward this end, we have identified the double C2 domain protein Doc2beta as a new binding partner for Munc18c. Unlike its granule/vesicle localization in neuronal cells, Doc2beta was found principally in the plasma membrane compartment in islet beta cells and adipocytes. Moreover, co-immunoprecipitation and GST interaction assays showed Doc2beta-Munc18c binding to be direct and complexes to be devoid of Syntaxin 4. Supporting the notion of Munc18c binding with Syntaxin 4 and Doc2beta in mutually exclusive complexes, in vitro competition with Syntaxin 4 effectively displaced Munc18c from binding to Doc2beta. The second C2 domain (C2B) of Doc2beta and an N-terminal region of Munc18c were sufficient to confer complex formation. Disruption of endogenous Munc18c-Doc2beta complexes by addition of the Doc2beta binding domain of Munc18c (residues 173-255) was found to selectively inhibit glucose-stimulated insulin release. Moreover, increased expression of Doc2beta enhanced glucose-stimulated insulin secretion by approximately 40%, whereas siRNA-mediated depletion of Doc2beta attenuated insulin release. All changes in secretion correlated with parallel alterations in VAMP2 granule docking with Syntaxin 4. Taken together, these data support a model wherein Munc18c transiently switches from association with Syntaxin 4 to association with Doc2beta at the plasma membrane to facilitate exocytosis.  相似文献   

12.
Glucose-induced insulin exocytosis is coupled to associations between F-actin and SNARE proteins, although the nature and function of these interactions remains unknown. Toward this end we show here that both Syntaxin 1A and Syntaxin 4 associated with F-actin in MIN6 cells and that each interaction was rapidly and transiently diminished by stimulation of cells with d-glucose. Of the two isoforms, only Syntaxin 4 was capable of interacting directly with F-actin in an in vitro sedimentation assay, conferred by the N-terminal 39-112 residues of Syntaxin 4. The 39-112 fragment was capable of selective competitive inhibitory action, disrupting endogenous F-actin-Syntaxin 4 binding in MIN6 cells. Disruption of F-actin-Syntaxin 4 binding correlated with enhanced glucose-stimulated insulin secretion, mediated by increased granule accumulation at the plasma membrane and increased Syntaxin 4 accessibility under basal conditions. However, no increase in basal level Syntaxin 4-VAMP2 association occurred with either latrunculin treatment or expression of the 39-112 fragment. Taken together, these data disclose a new underlying mechanism by which F-actin negatively regulates exocytosis via binding and blocking Syntaxin 4 accessibility, but they also reveal the existence of additional signals and/or steps required to trigger the subsequent docking and fusion steps of exocytosis.  相似文献   

13.
Insulin secretory deficiency and glucose intolerance in Rab3A null mice   总被引:4,自引:0,他引:4  
Insulin secretory dysfunction of the pancreatic beta-cell in type-2 diabetes is thought to be due to defective nutrient sensing and/or deficiencies in the mechanism of insulin exocytosis. Previous studies have indicated that the GTP-binding protein, Rab3A, plays a mechanistic role in insulin exocytosis. Here, we report that Rab3A(-/-) mice develop fasting hyperglycemia and upon a glucose challenge show significant glucose intolerance coupled to ablated first-phase insulin release and consequential insufficient insulin secretion in vivo, without insulin resistance. The in vivo insulin secretory response to arginine was similar in Rab3A(-/-) mice as Rab3A(+/+) control animals, indicating a phenotype reminiscent of insulin secretory dysfunction found in type-2 diabetes. However, when a second arginine dose was given 10 min after, there was a negligible insulin secretory response in Rab3A(-/-) mice, compared with that in Rab3A(+/+) animals, that was markedly increased above that to the first arginine stimulus. There was no difference in beta-cell mass or insulin production between Rab3A(-/-) and Rab3A(+/+) mice. However, in isolated islets, secretagogue-induced insulin release (by glucose, GLP-1, glyburide, or fatty acid) was approximately 60-70% lower in Rab3A(-/-) islets compared with Rab3A(+/+) controls. Nonetheless, there was a similar rate of glucose oxidation and glucose-induced rise in cytosolic [Ca(2+)](i) flux between Rab3A(-/-) and Rab3A(+/+) islet beta-cells, indicating the mechanistic role of Rab3A lies downstream of generating secondary signals that trigger insulin release, at the level of secretory granule transport and/or exocytosis. Thus, Rab3A plays an important in vivo role facilitating the efficiency of insulin exocytosis, most likely at the level of replenishing the ready releasable pool of beta-granules. Also, this study indicates, for the first time, that the in vivo insulin secretory dysfunction found in type-2 diabetes can lie solely at the level of defective insulin exocytosis.  相似文献   

14.
Advanced glycation endproducts (AGEs) and the receptor for AGEs (RAGE) have been linked to the pathogenesis of diabetic complications, such as retinopathy, neuropathy, and nephropathy. AGEs may induce β-cell dysfunction and apoptosis, another complication of diabetes. However, the role of AGE-RAGE interaction in AGE-induced pancreatic β-cell failure has not been fully elucidated. In this study, we investigated whether AGE–RAGE interaction could mediate β-cell failure. We explored the potential mechanisms in insulin secreting (INS-1) cells from a pancreatic β-cell line, as well as primary rat islets. We found that glycated serum (GS) induced apoptosis in pancreatic β-cells in a dose- and time-dependent manner. Treatment with GS increased RAGE protein production in cultured INS-1 cells. GS treatment also decreased bcl-2 gene expression, followed by mitochondrial swelling, increased cytochrome c release, and caspase activation. RAGE antibody and knockdown of RAGE reversed the β-cell apoptosis and bcl-2 expression. Inhibition of RAGE prevented AGE-induced pancreatic β-cell apoptosis, but could not restore the function of glucose stimulated insulin secretion (GSIS) in rat islets. In summary, the results of the present study demonstrate that AGEs are integrally involved in RAGE-mediated apoptosis and impaired GSIS dysfunction in pancreatic β-cells. Inhibition of RAGE can effectively protect β-cells against AGE-induced apoptosis, but cannot reverse islet dysfunction in GSIS.  相似文献   

15.

Background

Pancreatic β-cells release insulin via an electrogenic response triggered by an increase in plasma glucose concentrations. The critical plasma glucose concentration has been determined to be ~3 mM, at which time both insulin and GABA are released from pancreatic β-cells. Taurine, a β-sulfonic acid, may be transported into cells to balance osmotic pressure. The taurine transporter (TauT) has been described in pancreatic tissue, but the function of taurine in insulin release has not been established. Uptake of taurine by pancreatic β-cells may alter membrane potential and have an effect on ion currents. If taurine uptake does alter β-cell current, it might have an effect on exocytosis of cytoplasmic vesicle. We wished to test the effect of taurine on regulating release of insulin from the pancreatic β-cell.

Methods

Pancreatic β-cell lines Hit-TI5 (Syrian hamster) and Rin-m (rat insulinoma) were used in these studies. Cells were grown to an 80% confluence on uncoated cover glass in RPMI media containing 10% fetal horse serum. The cells were then adapted to a serum-free, glucose free environment for 24 hours. At that time, the cells were treated with either 1 mM glucose, 1 mM taurine, 1 mM glucose + 1 mM taurine, 3 mM glucose, or 3 mM glucose + 1 mM taurine. The cells were examined by confocal microscopy for cytoplasmic levels of insulin.

Results

In both cell lines, 1 mM glucose had no effect on insulin levels and served as a control. Cells starved of glucose had a significant reduction (p<0.001) in the level of insulin, but this level was significantly higher than all other treatments. As expected, the 3 mM glucose treatment resulted in a statistically lower (p<0.001) insulin level than control cells. Interestingly, 1 mM taurine also resulted in a statistically lower level of insulin (p<0.001) compared to controls when either no glucose or 1 mM glucose was present. Cells treated with 1 mM taurine plus 3 mM glucose showed a level of insulin similar to that of 3 mM glucose alone.

Conclusions

Taurine administration can alter the electrogenic response in β-cell lines, leading to a change in calcium homeostasis and a subsequent decrease in intracellular insulin levels. The consequence of these actions could represent a method of increasing plasma insulin levels leading to a decrease in plasma glucose levels.
  相似文献   

16.
The inositol pyrophosphate, diphosphoinositol pentakisphosphate (IP7), is thought to negatively regulate the critical insulin signaling protein Akt/PKB. Knockdown of the IP7-generating inositol hexakisphosphate kinase 1 (IP6K1) results in a concomitant increase in signaling through Akt/PKB in most cell types so far examined. Total in vivo knockout of IP6K1 is associated with a phenotype resistant to high-fat diet, due to enhanced Akt/PKB signaling in classic insulin regulated tissues, counteracting insulin resistance. In contrast, we have shown an important positive role for IP6K1 in insulin exocytosis in the pancreatic β-cell. These cells also possess functional insulin receptors and the feedback loop following insulin secretion is a key aspect of their normal function. Thus we examined the effect of silencing IP6K1 on the activation of Akt/PKB in β-cells. Silencing reduced the glucose-stimulated increase in Akt/PKB phosphorylation on T308 and S473. These effects were reproduced with the selective pan-IP6K inhibitor TNP. The likely explanation for IP7 reduction decreasing rather than increasing Akt/PKB phosphorylation is that IP7 is responsible for generating the insulin signal, which is the main source of Akt/PKB activation. In agreement, insulin receptor activation was compromised in TNP treated cells. To test whether the mechanism of IP7 inhibition of Akt/PKB still exists in β-cells, we treated them at basal glucose with an insulin concentration equivalent to that reached during glucose stimulation. TNP potentiated the Akt/PKB phosphorylation of T308 induced by exogenous insulin. Thus, the IP7 regulation of β-cell Akt/PKB is determined by two opposing forces, direct inhibition of Akt/PKB versus indirect stimulation via secreted insulin. The latter mechanism is dominant, masking the inhibitory effect. Consequently, pharmacological strategies to knock down IP6K activity might not have the same positive output in the β-cell as in other insulin regulated tissues.  相似文献   

17.
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.  相似文献   

18.
Given the growing interest in porcine islets as model tissue for studying the pathogenesis of human diabetes mellitus and its treatment by transplantation, we investigated stimulus-exocytosis coupling in single porcine β-cells using patch clamp electrophysiology, Ca2+ imaging, capacitance tracking and amperometry. We establish that porcine β-cells display several features prominently seen in β-cells from human islets of Langerhans. These include: (i) wide heterogeneity of electrical responsiveness to glucose; (ii) dependence of action potential activity on voltage-dependent Na+ as well as high voltage activated Ca2+ current; (iii) heterogeneity of time course of depolarization-evoked insulin granule exocytosis; and (iv) the dependence of vigorous single cell electrical activity and insulin granule exocytosis on the presence of agents that enhance cytosolic cAMP concentration. These findings promote the usefulness of porcine β-cells as a model for studying β-cell function in large mammals, including humans, as well as an appropriate source of tissue for xenotransplantation.  相似文献   

19.
Glucagon-like peptide 1 (GLP-1) potentiates glucose-stimulated insulin secretion from pancreatic β cells, yet does not directly stimulate secretion. The mechanisms underlying this phenomenon are incompletely understood. Here, we report that GLP-1 augments glucose-dependent rises in NAD(P)H autofluorescence in both βTC3 insulinoma cells and islets in a manner consistent with post-translational activation of glucokinase (GCK). GLP-1 treatment increased GCK activity and enhanced GCK S-nitrosylation in βTC3 cells. A 2-fold increase in S-nitrosylated GCK was also observed in mouse islets. Furthermore, GLP-1 activated a FRET-based GCK reporter in living cells. Activation of this reporter was sensitive to inhibition of nitric-oxide synthase (NOS), and incorporating the S-nitrosylation-blocking V367M mutation into this sensor prevented activation by GLP-1. GLP-1 potentiation of the glucose-dependent increase in islet NAD(P)H autofluorescence was also sensitive to a NOS inhibitor, whereas NOS inhibition did not affect the response to glucose alone. Expression of the GCK(V367M) mutant also blocked GLP-1 potentiation of the NAD(P)H response to glucose in βTC3 cells, but did not significantly affect metabolism of glucose in the absence of GLP-1. Co-expression of WT or mutant GCK proteins with a sensor for insulin secretory granule fusion also revealed that blockade of post-translational GCK S-nitrosylation diminished the effects of GLP-1 on granule exocytosis by ~40% in βTC3 cells. These results suggest that post-translational activation of GCK is an important mechanism for mediating the insulinotropic effects of GLP-1.  相似文献   

20.
Protein S-nitrosylation is a reversible protein modification implicated in both physiological and pathophysiological regulation of protein function. In obesity, skeletal muscle insulin resistance is associated with increased S-nitrosylation of insulin-signaling proteins. However, whether adipose tissue is similarly affected in obesity and, if so, what are the causes and functional consequences of increased S-nitrosylation in this tissue are unknown. Total protein S-nitrosylation was increased in intra-abdominal adipose tissue of obese humans and in high fat-fed or leptin-deficient ob/ob mice. Both the insulin receptor β-subunit and Akt were S-nitrosylated, correlating with body weight. Elevated protein and mRNA expression of inducible NO synthase and decreased protein levels of thioredoxin reductase were associated with increased adipose tissue S-nitrosylation. Cultured differentiated pre-adipocyte cell lines exposed to the NO donors S-nitrosoglutathione (GSNO) or S-nitroso-N-acetylpenicillamine exhibited diminished insulin-stimulated phosphorylation of Akt but not of GSK3 nor of insulin-stimulated glucose uptake. Yet the anti-lipolytic action of insulin was markedly impaired in both cultured adipocytes and in mice injected with GSNO prior to administration of insulin. In cells, impaired ability of insulin to diminish phosphorylated PKA substrates in response to isoproterenol suggested impaired insulin-induced activation of PDE3B. Consistently, increased S-nitrosylation of PDE3B was detected in adipose tissue of high fat-fed obese mice. Site-directed mutagenesis revealed that Cys-768 and Cys-1040, two putative sites for S-nitrosylation adjacent to the substrate-binding site of PDE3B, accounted for ~50% of its GSNO-induced S-nitrosylation. Collectively, PDE3B and the anti-lipolytic action of insulin may constitute novel targets for increased S-nitrosylation of adipose tissue in obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号