首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Three gene systems have been shown to exhibit proximity-dependent phenotypes in Drosophila melanogaster: bithorax (BX-C), decapentaplegic (DPP-C) and white (w). In structurally homozygous genotypes, specific allelic combinations at these loci exhibit one phenotype, while in certain rearrangement heterozygotes the same allelic combinations exhibit dramatically different phenotypes. These observations have led to the suggestion that, through the process of somatic chromosome pairing, such loci are brought into sufficient proximity to permit effective passage of molecular information between homologues; rearrangement heterozygosity would then displace the homologues relative to one another such that this trans-communication is obviated. The genetic properties of the proximity-dependent allelic complementation (termed transvection effects) at the BX-C and DPP-C, are quite similar. Chromosomal rearrangements which disrupt transvection possess a breakpoint in a particular segment of the chromosome arm bearing the transvection-sensitive gene (arm 2L for the DDP-C and 3R for the BX-C); this segment of each arm has been termed the critical region by Lewis (1954). As determined by cytogenetic analysis of transvection-disrupting rearrangements, the critical regions for the BX-C and DDP-C transvection effects extend proximally from these loci for several hundred polytene chromosome bands (Lewis 1954; Gelbart 1982). The interaction between the zeste and white loci appears to depend upon the proximity of the two w+ alleles. By use of insertional duplications, displacement of w+ homologues has been shown to interfere with the zeste-white interaction. In contrast to transvection at bithorax and decapentaplegic, however, only breakpoints in the immediate vicinity of the white locus can disrupt the zeste-white interaction (Gans 1953; Green 1967; Gelbart 1971; this report). In this report, we investigate the basis for the difference in the size of the BX-C and DPP-C critical regions from that of white. We test and eliminate the possibility that the difference is due to the presence near the white locus of a site which mediates somatic chromosome pairing. Rather, our evidence strongly suggests that the zeste-white interaction is, at the phenotypic level, much less sensitive to displacement of the homologous genes than is transvection at either the BX-C or DPP-C. We also show that many of the breakpoints in the vicinity of the white locus do not behave as if they are disrupting a critical region for somatic chromosome pairing. Given these results, we suggest that the zeste-white interaction and transvection are two different proximity-dependent phenomena.  相似文献   

4.
M Benson  V Pirrotta 《The EMBO journal》1988,7(12):3907-3915
The Drosophila zeste protein binds in vitro to several sites in the white, Ultrabithorax, decapentaplegic, Antennapedia, and engrailed genes and to at least one site in the zeste gene itself. The distribution of these sites corresponds often with that of regulatory elements in these genes as defined by mutations or, in the case of white, by molecular analysis. A zeste binding site is frequently found in the immediate vicinity of the promoter. zeste binding sites are composed of two or more zeste recognition sequences T/CGAGT/CG. Isolated consensus sequences do not bind or footprint. Cooperative interactions are involved both in binding to a given site and between proteins bound at independent sites. zeste bound to one DNA molecule can in fact bind simultaneously to another DNA molecule. These results suggest a general role for zeste in bringing together distant regulatory elements controlling the activity of a target gene. In this model, transvection effects are a by-product of normal intragenic zeste action.  相似文献   

5.
The Drosophila zeste gene and transvection   总被引:25,自引:0,他引:25  
  相似文献   

6.
The zeste gene product is required for transvection effects that imply the ability of regulatory elements on one chromosome to affect the expression of the homologous gene in a somatically paired chromosome. The z1 mutation causes a pairing dependent inhibition of the expression of the white gene. Both of these phenomena can be explained by the tendency of zeste protein, expressed in bacteria or in flies, to self-associate, forming complexes of several hundred monomers. These large aggregates bind to DNA and are found in nuclear matrix preparations, probably because they co-sediment with the matrix. The principal determinants of this self-association are located in the C-terminal half of the protein but some limited aggregation is obtained also with the N-terminal half, which contains the DNA binding domain. The z1 and zop2 mutant proteins aggregate to the same degree as the wild type but the z11G3 product, a pseudorevertant of z1, has a reduced tendency to aggregate. This mutation, which in vivo is antagonistic to z1 and does not support transvection effects, can be made to revert its phenotype when the mutant protein is over-produced under the control of the heat shock promoter. These results indicate that both the zeste-white interaction and transvection effects require the formation of high order aggregates. When the z1 protein is over-produced in vivo, it reduces the expression of an unpaired copy of white, indicating that the normal requirement for chromosome pairing is simply a device to increase the size of the aggregate bound to the white regulatory region.  相似文献   

7.
The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.  相似文献   

8.
Structure and sequence of the Drosophila zeste gene.   总被引:20,自引:4,他引:16       下载免费PDF全文
The zeste gene of Drosophila affects the expression of other genes in a manner that depends on the homologous pairing of the chromosomes bearing the target gene. Zeste mediates transvection effects, the ability of one gene to control the expression of its homologous copy on another chromosome. We have determined the structure of the zeste gene and several mutants bearing partial deletions and the sequence of the z+, z1, zop6 and z11G3 alleles. The predicted zeste protein has an unusual structure including runs of Gln, Ala and alternating Gln Ala. Contrary to expectations the z1, zop6 and z11G3 mutations can each be attributed to single amino acid changes. The analysis of the mutants suggests that the zeste gene product is required for normal expression of at least some genes and we argue that za mutants may have residual function.  相似文献   

9.
C. T. Wu  M. Howe 《Genetics》1995,140(1):139-181
The zeste(1) (z(1)) mutation of Drosophila melanogaster produces a mutant yellow eye color instead of the wild-type red. Genetic and molecular data suggest that z(1) achieves this change by altering expression of the wild-type white gene in a manner that exhibits transvection effects. There exist suppressor and enhancer mutations that modify the z(1) eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C]. The Su(z)2-C consists of at least three subregions called Psc (Posterior sex combs), Su(z)2 and Su(z)2D (Distal). The products of these subregions are proposed to act at the level of chromatin. Complementation analyses predict that the products are functionally similar and interacting. The alleles of Psc define two overlapping phenotypic classes, the hopeful and hapless. The distinctions between these two classes and the intragenic complementation seen among some of the Psc alleles are consistent with a multidomain structure for the product of Psc. Psc is a member of the homeotic Polycomb group of genes. A general discussion of the Polycomb and trithorax group of genes, position-effect variegation, transvection, chromosome pairing and chromatin structure is presented.  相似文献   

10.
Transvection at the Eyes Absent Gene of Drosophila   总被引:5,自引:2,他引:3       下载免费PDF全文
W. M. Leiserson  N. M. Bonini    S. Benzer 《Genetics》1994,138(4):1171-1179
The Drosophila eyes absent (eya) gene is required for survival and differentiation of eye progenitor cells. Loss of gene function in the eye results in reduction or absence of the adult compound eye. Certain combinations of eya alleles undergo partial complementation, with dramatic restoration of eye size. This interaction is sensitive to the relative positions of the two alleles in the genome; rearrangements predicted to disrupt pairing of chromosomal homologs in the eya region disrupt complementation. Ten X-ray-induced rearrangements that suppress the interaction obey the same general rules as those tha disrupt transvection at the bithorax complex and the decapentaplegic gene. Moreover, like transvection in those cases, the interaction at eya depends on the presence of normal zeste function. The discovery of transvection at eya suggests that transvection interactions of this type may be more prevalent than generally thought.  相似文献   

11.
12.
13.
J D Chen  V Pirrotta 《The EMBO journal》1993,12(5):2061-2073
The zeste gene is involved in two chromosome pairing-dependent phenomena: transvection and the suppression of white gene expression. Both require the ability of zeste protein to multimerize, dependent on three interlaced hydrophobic heptad repeats in the C-terminal domain. The first step is dimerization through a leucine zipper. Two other heptad repeats are then required to form higher multimers. The zeta(1) mutation, which causes the pairing-dependent suppression of white, creates a new hydrophobic nucleus that allows the formation of a new and larger aggregate. The zeta(op6) mutation, which suppresses even unpaired copies of white, makes even larger aggregates. The phenotypic suppression of white by a series of mutants is strictly correlated with hyperaggregation and the larger the hyperaggregates, the weaker the requirement for the pairing of white. Hyperaggregation of the Z1 protein in vitro is suppressed by co-translation with the C-terminal peptide of wild-type protein, lacking the DNA-binding domain. This C-Z+ peptide also complements the zeta(1) allele in vivo and restores normal color, demonstrating that zeste product also exists in a multimeric complex in the cell. Complementation in vivo is strictly correlated with the prevention of hyperaggregation of the zeste mutant products in vitro, supporting the interpretation that excessive association of zeta(1) and zeta(op6) proteins is responsible for their repression of white gene expression.  相似文献   

14.
15.
R. Hopmann  D. Duncan    I. Duncan 《Genetics》1995,139(2):815-833
The Abdominal-B (Abd-B) gene of the bithorax complex (BX-C) of Drosophila controls the identities of the fifth through seventh abdominal segments and segments in the genitalia (more precisely, parasegments 10-14). Here we focus on iab-5, iab-6 and iab-7, regulatory regions of Abd-B that control expression in the fifth, sixth and seventh abdominal segments (parasegments 10-12). By analysis of partial BX-C deficiencies, we show that these regions are able to promote fifth and sixth abdominal segment identities in the absence of an Abd-B gene in cis. We establish that this ability does not result from cis-regulation of the adjacent abd-A or Ubx genes of the BX-C but rather occurs because the iab-5,6,7 region is able to interact with Abd-B in trans. We demonstrate that this interaction is proximity dependent and is, therefore, a case of what E. B. LEWIS has called transvection. Interactions of this type are presumably facilitated by the synapsis of homologues that occurs in somatic cells of Dipterans. Although transvection has been detected in a number of Drosophila genes, transvection of the iab-5,6,7 region is exceptional in two ways. First, interaction in trans with Abd-B does not require that homologues share homologous sequences within, or for some distance to either side of, the BX-C. This is the first case of transvection shown to be independent of local synapsis. A second unusual feature of iab-5,6,7 transvection is that it is remarkably difficult to disrupt by heterozygosity for chromosome rearrangements. The lack of requirement for local synapsis and the tenacity of trans-interaction argue that the iab-5,6,7 region can locate and interact with Abd-B over considerable distance. This is consistent with the normal role of iab-5,6,7, which must act over some 20-60 kb to influence its regulatory target in cis at the Abd-B promoter. Evidence is presented that trans-action of iab-5,6,7 requires, and may be mediated by, the region between distal iab-7 and Abd-B. Also, we show that iab-5,6,7 transvection is independent of the allelic state of zeste, a gene that influences several other cases of transvection. The long-range nature of interactions in trans between iab-5,6,7 and Abd-B suggests that similar interactions could operate effectively in organisms lacking extensive somatic pairing. Transvection may, therefore, be of more general significance than previously suspected.  相似文献   

16.
17.
D. Gubb  M. Ashburner  J. Roote    T. Davis 《Genetics》1990,126(1):167-176
The zeste mutation of Drosophila melanogaster suppresses the expression of white genes in the eye. This suppression is normally dependent on there being two copies of w+ located close to each other in the genome--they may either be in cis (as in a tandem duplication of w+) or in trans, i.e. on homologous chromosomes. Duplicated w+ genes carried by a giant transposing element, TE146(Z), are suppressed by z whether they are in direct (tandem) or inverted order. The tandem form of the TE is very sensitive to a rearrangement on the homologous chromosome--many rearrangements with breakpoints "opposite" the TE's insertion site prevent the interaction between the white genes on a z background. These aberrations act as dominant suppressors of zeste that are specific to the tandemly duplicated form of TE146(Z). The inverted form of the TE146(Z) presumably pairs as a hairpin loop; this is more stable than the tandem form by the criterion that its zeste phenotype is unaffected by any of the aberrations. This effect of rearrangements has been used as the basis for a screen, gamma-ray induced aberrations with at least one breakpoint opposite the TE site were recovered by their suppression of the zeste phenotype.  相似文献   

18.
Isolation and characterization of the zeste locus of Drosophila   总被引:9,自引:6,他引:3       下载免费PDF全文
  相似文献   

19.
Three different segments of the zeste coding sequence were inserted in an expression vector and antibodies were raised against the resulting zeste-beta galactosidase hybrid proteins. The antibodies were used to analyse the zeste protein produced in bacteria from a different expression vector containing the entire zeste coding region. The major products made in bacteria as well as the products of in vitro translation of zeste RNA migrate anomalously upon SDS--acrylamide gel electrophoresis. Specific DNA fragments from the white and Ubx gene co-immunoprecipitate with zeste protein. At least two independent zeste binding sites are found in a 250-bp interval of the white regulatory region that contains also the sites of wsp mutations, which are known to be deficient in zeste interaction.  相似文献   

20.
Summary An unstable long tandem duplication which includes the white locus twice, marked with w sp in the left and w 17G in the right locus, when kept in males has been found to produce red-eyed sons which have lost the long duplication and with it the w sp and w 17G mutants. Such exceptions were produced also when w 17G had been exchanged for w a.Stocks originating from these exceptions are unstable, producing: 1) zeste males, also unstable, 2) w - deletions, stable, 3) transpositions of the white locus to sites in other chromosomes.The instability is interpreted as the effect of an IS element, within or adjacent to the white locus, which is supposed to retain a duplication of the proximal zeste interacting part of this locus. According to the orientation of the IS element the duplicated part can be active or inactive, giving a zeste or red eye phenotype.The frequency of exceptional offspring after X-ray treatment of the red and zeste unstable stocks have been compared to stable stocks with corresponding genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号