首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methacholine and citric acid responses were assessed before, during, and after 6 wk of oral treatment with either placebo or methylprednisolone (2 mg.kg-1.day-1) in 12 Basenji-Greyhound dogs. Bronchoalveolar lavage was performed in three dogs in each group before, during, and after pretreatment. Base-line airway resistance and dynamic compliance did not change with treatment in any of the groups. Placebo treatment had no demonstrable effect on methacholine and citric acid responsiveness. Methylprednisolone treatment abolished the constrictor response to citric acid during the 4th and 6th wk of treatment and significantly reduced methacholine responsiveness during the 3rd and 5th wk of treatment. Methylprednisolone treatment was associated with a marked reduction in the percent of eosinophils, but not mast cells, in the bronchoalveolar lavage fluid during the 7th wk. Blood eosinophil counts were also markedly reduced in the methylprednisolone-treated group compared with the placebo-treated group during the 7th wk. The decrease in numbers of eosinophils in blood and bronchoalveolar lavage fluid suggests interference with the inflammatory process as a possible mechanism for the observed reduction in airway hyperresponsiveness in the Basenji-Greyhound dog.  相似文献   

2.
Viral respiratory infections can cause bronchial hyperresponsiveness and exacerbate asthma. In mice, respiratory syncytial virus (RSV) infection results in airway hyperresponsiveness (AHR) and eosinophil influx into the airways. The immune cell requirements for these responses to RSV infection are not well defined. To delineate the role of CD8 T cells in the development of RSV-induced AHR and lung eosinophilia, we tested the ability of mice depleted of CD8 T cells to develop these symptoms of RSV infection. BALB/c mice were depleted of CD8 T cells using anti-CD8 Ab treatment before intranasal administration of infectious RSV. Six days postinfection, airway responsiveness to inhaled methacholine was assessed by barometric body plethysmography, and numbers of lung eosinophils and levels of IFN-gamma, IL-4, and IL-5 in bronchoalveolar lavage fluid were monitored. RSV infection resulted in airway eosinophilia and AHR in control mice, but not in CD8-depleted animals. Further, whereas RSV-infected mice secreted increased amounts of IL-5 into the airways as compared with noninfected controls, no IL-5 was detectable in both bronchoalveolar lavage fluid and culture supernatants from CD8-depleted animals. Treatment of CD8-depleted mice with IL-5 fully restored both lung eosinophilia and AHR. We conclude that CD8 T cells are essential for the influx of eosinophils into the lung and the development of AHR in response to RSV infection.  相似文献   

3.
Each year, approximately 20% of asthmatics in the United States experience acute symptom exacerbations, which commonly result from pulmonary viral infections. The majority of asthma exacerbations in very young children follow infection with respiratory syncytial virus (RSV). However, pathogenic mechanisms underlying induction of asthma exacerbations by RSV are not well understood. We therefore investigated the effect of post-sensitization RSV infection on lung function in ovalbumin (OVA)-sensitized BALB/c mice as a model of RSV asthma exacerbations. OVA sensitization of uninfected female BALB/c mice increased bronchoalveolar lavage fluid (BALF) eosinophil levels and induced airway hyperresponsiveness to the muscarinic agonist methacholine, as measured by the forced-oscillation technique. In contrast, intranasal infection with replication-competent RSV strain A2 for 2–8 days reduced BALF eosinophil counts and reversed airway hyperresponsiveness in a pertussis toxin-sensitive manner. BALF levels of the chemokine keratinocyte cytokine (KC; a murine homolog of interleukin-8) were elevated in OVA-sensitized, RSV-infected mice and reversal of methacholine hyperresponsiveness in these animals was rapidly inhibited by KC neutralization. Hyporesponsiveness could be induced in OVA-sensitized, uninfected mice by recombinant KC or the Gαi agonist melittin. These data suggest that respiratory syncytial virus induces KC-mediated activation of Gαi, resulting in cross-inhibition of Gαq-mediated M3-muscarinic receptor signaling and reversal of airway hyperresponsiveness. As in unsensitized mice, KC therefore appears to play a significant role in induction of airway dysfunction by respiratory syncytial virus. Hence, interleukin-8 may be a promising therapeutic target to normalize lung function in both asthmatics and non-asthmatics with bronchiolitis. However, the OVA-sensitized, RSV-infected mouse may not be an appropriate model for investigating the pathogenesis of viral asthma exacerbations.  相似文献   

4.
Within the airways, endothelin-1 (ET-1) can exert a range of prominent effects, including airway smooth muscle contraction, bronchial obstruction, airway wall edema, and airway remodeling. ET-1 also possesses proinflammatory properties and contributes to the late-phase response in allergic airways. However, there is no direct evidence for the contribution of endogenous ET-1 to airway hyperresponsiveness in allergic airways. Allergic inflammation induced in mice by sensitization and challenge with the house dust mite allergen Der P1 was associated with elevated levels of ET-1 within the lung, increased numbers of eosinophils within bronchoalveolar lavage fluid and tissue sections, and development of airway hyperresponsiveness to methacholine (P < 0.05, n = 6 mice per group). Treatment of allergic mice with an endothelin receptor antagonist, SB-217242 (30 mg x kg(-1) x day(-1)), during allergen challenge markedly inhibited airway eosinophilia (bronchoalveolar lavage fluid and tissue) and development of airway hyperresponsiveness. These findings provide direct evidence for a mediator role for ET-1 in development of airway hyperresponsiveness and airway eosinophilia in Der P1-sensitized mice after antigen challenge.  相似文献   

5.
Asthma is a chronic inflammatory disease characterized by reversible bronchial constriction, pulmonary inflammation and airway remodeling. Current standard therapies for asthma provide symptomatic control but fail to target the underlying disease pathology. Furthermore, no therapeutic agent is effective in preventing airway remodeling. Interleukin 13 (IL-13) is a pleiotropic cytokine produced mainly by T cells. A substantial amount of evidence suggests that IL-13 plays a critical role in the pathogenesis of asthma. Therefore, a neutralizing anti-IL-13 monoclonal antibody could provide therapeutic benefits to asthmatic patients. To test the concept we have generated a neutralizing rat anti-mouse IL-13 monoclonal antibody, and evaluated its effects in a chronic mouse model of asthma. Chronic asthma-like response was induced in ovalbumin (OVA) sensitized mice by repeated intranasal OVA challenges. After weeks of challenge, mice developed airway hyperresponsiveness (AHR) to methacholine stimulation, severe airway inflammation, hyper mucus production, and subepithelial fibrosis. When given at the time of each intranasal OVA challenge, anti-IL-13 antibody significantly suppressed AHR, eosinophil infiltration, proinflammatory cytokine/chemokine production, serum IgE, and most interestingly, airway remodeling. Taken together, these results strongly suggest that a neutralizing anti-human IL-13 monoclonal antibody could be an effective therapeutic agent for asthma.  相似文献   

6.
The allergy is dependent on the balance between Th1 and Th2. The fungal immunodulatory protein (FIP-fve) was isolated from Flammulina velutipes. FIP-fve has been demonstrated to skew the response to Th1 cytokine production. We investigated whether oral administrations of FIP-fve inhibited allergen (OVA)-induced chronic airway inflammation in the mouse asthma model. After intranasal challenge with OVA, the airway inflammation and hyperresponsiveness were determined by bronchoalveolar lavage fluid (BALF) analysis and ELISA assay. Both pre-treated and post-treated with FIP-fve suppressed the airway hyperresponsiveness by methacholine challenge and significantly decreased the number of infiltrating inflammatory cells and Th2 cytokines in bronchoalveolar lavage fluid (BALF) and serum compared with the OVA sensitized mice. In addition, FIP-fve reduced OVA-specific IgE levels in serum. FIP-fve markedly alleviated the OVA-induced airway hyperresponsiveness (AHR) to inhaled methacholine. Based on lung histopathological studies using hematoxylin and Liu’s staining, FIP-fve inhibited inflammatory cell infiltration compared with the OVA-sensitized mice. Oral FIP-fve had an anti-inflammatory effect on OVA-induced airway inflammations and might posses the potential for alternative therapy for allergic airway diseases.  相似文献   

7.
Asthma is a chronic lung disease exhibiting airway obstruction, hyperresponsiveness, and inflammation, characterized by the infiltration of eosinophils into the airways and the underlying tissue. Prolonged eosinophilic inflammation depends on the balance between the cell's inherent tendency to undergo apoptosis and the local eosinophil-viability enhancing activity. TRAIL, a member of the TNF family, induces apoptosis in most transformed cells; however, its role in health and disease remains unknown. To test the hypothesis that Ag-induced inflammation is associated with TRAIL/TRAIL-R interactions, we used a segmental Ag challenge (SAC) model in ragweed-allergic asthmatics and nonasthmatic patients and analyzed bronchoalveolar lavage (BAL) material for 2 wk. In asthmatic patients, the level of TRAIL in BAL fluid dramatically increased 24 h after SAC, which significantly correlated with BAL eosinophil counts. Immunohistochemical analysis of bronchial biopsies from asthmatic patients demonstrated that TRAIL staining was increased in epithelial, airway smooth muscle, and vascular smooth muscle cells and throughout the interstitial tissue after SAC. This was confirmed by quantitative immunocytochemical image analysis of BAL eosinophils and alveolar macrophages, which demonstrated that expression levels of TRAIL and DcR2 increased, whereas expression levels of the TRAIL-Rs DR4 and DR5 decreased in asthmatic subjects after SAC. We also determined that TRAIL prolongs eosinophil survival ex vivo. These data provide the first in vivo evidence that TRAIL expression is increased in asthmatics following Ag provocation and suggest that modulation of TRAIL and TRAIL-R interactions may play a crucial role in promoting eosinophil survival in asthma.  相似文献   

8.
Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.  相似文献   

9.
We tested the potential of CpG oligodeoxynucleotides (ODN) to reverse the increased susceptibility to allergic airways disease in neonatal mice in a model of maternal transmission of asthma risk. Offspring of OVA-sensitized and challenged BALB/c mother mice were subjected to an intentionally suboptimal sensitization protocol that has minimal effects on normal mice, but results in airway hyperresponsiveness (AHR) and airway inflammation (AI) in babies of asthmatic mother mice. We evaluated pulmonary function and AI in CpG- or control ODN-treated offspring. CpG treatment of neonates on day 4 of life prevents the AHR otherwise seen in this model (enhanced pause at 100 mg/ml methacholine: CpG, 0.9 +/- 0.1; ODN control, 3.8 +/- 0.6; n = 62; p < 0.005). It also prevented the development of AI, as evident in decreased bronchoalveolar lavage eosinophilia (CpG, 1.2 +/- 0.3%; ODN, 31.4 +/- 4.1%; n = 56; p < 0.005), diminished the severity of AI on histopathology, and resulted in lower IL-5 levels in bronchoalveolar lavage fluid. The effect of CpG persisted for at least 4-6 wk and was allergen independent. Treatment with CpG just before OVA aerosol challenge also prevented allergic responses. The data support the potential for immunomodulatory therapy with CpG in early life to reduce susceptibility to asthma.  相似文献   

10.
《Epigenetics》2013,8(12):1463-1470
Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice

(p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.  相似文献   

11.
New treatment approaches are needed for patients with asthma. Apolipoprotein A-I (apoA-I), the major structural protein of high-density lipoproteins, mediates reverse cholesterol transport and has atheroprotective and anti-inflammatory effects. In this study, we hypothesized that an apoA-I mimetic peptide might be effective at inhibiting asthmatic airway inflammation. A 5A peptide, which is a synthetic, bihelical apoA-I mimetic, was administered to wild-type A/J mice via osmotic mini-pump prior to the induction of house dust mite (HDM)-induced asthma. HDM-challenged mice that received the 5A apoA-I mimetic peptide had significant reductions in the number of bronchoalveolar lavage fluid eosinophils, lymphocytes, and neutrophils, as well as in histopathological evidence of airway inflammation. The reduction in airway inflammation was mediated by a reduction in the expression of Th2- and Th17-type cytokines, as well as in chemokines that promote T cell and eosinophil chemotaxis, including CCL7, CCL17, CCL11, and CCL24. Furthermore, the 5A apoA-I mimetic peptide inhibited the alternative activation of pulmonary macrophages in the lungs of HDM-challenged mice. It also abrogated the development of airway hyperresponsiveness and reduced several key features of airway remodeling, including goblet cell hyperplasia and the expression of collagen genes (Col1a1 and Col3a1). Our results demonstrate that the 5A apoA-I mimetic peptide attenuates the development of airway inflammation and airway hyperresponsiveness in an experimental murine model of HDM-induced asthma. These data support the conclusion that strategies using apoA-I mimetic peptides, such as 5A, might be developed further as a possible new treatment approach for asthma.  相似文献   

12.
Bronchial eosinophil and mononuclear cell infiltrates are a hallmark of the asthmatic lung and are associated with the induction of reversible airway hyperreactivity. In these studies, we have found that monocyte chemotactic protein-1 (MCP-1), a CC (beta) chemokine, mediates airway hyperreactivity in normal and allergic mice. Using a murine model of cockroach Ag-induced allergic airway inflammation, we have demonstrated that anti-MCP-1 Abs inhibit changes in airway resistance and attenuate histamine release into the bronchoalveolar lavage, suggesting a role for MCP-1 in mast cell degranulation. In normal mice, instillation of MCP-1 induced prolonged airway hyperreactivity and histamine release. In addition, MCP-1 directly induced pulmonary mast cell degranulation in vitro. These latter effects would appear to be selective because no changes were observed when macrophage-inflammatory protein-1alpha, eotaxin, or MCP-3 were instilled into the airways of normal mice or when mast cells were treated in vitro. Airway hyperreactivity was mediated by MCP-1 through CCR2 because allergen-induced as well as direct MCP-1 instilled-induced changes in airway hyperreactivity were significantly attenuated in CCR2 -/- mice. The neutralization of MCP-1 in allergic animals and instillation of MCP-1 in normal animals was related to leukotriene C4 levels in the bronchoalveolar lavage and was directly induced in pulmonary mast cells by MCP-1. Thus, these data identify MCP-1 and CCR2 as potentially important therapeutic targets for the treatment of hyperreactive airway disease.  相似文献   

13.
We have reported previously that HIV-TAT-dominant negative (dn) Ras inhibits eosinophil adhesion to ICAM-1 after activation by IL-5 and eotaxin. In this study, we evaluated the role of Ras in Ag-induced airway inflammation and hyperresponsiveness by i.p. administration into mice of dnRas, which was fused to an HIV-TAT protein transduction domain (TAT-dnRas). Uptake of TAT-dnRas (t(1/2) = 12 h) was demonstrated in leukocytes after i.p. administration. OVA-sensitization significantly increased eosinophil and lymphocyte numbers in bronchoalveolar lavage fluid 24 h after final challenge. Treatment of animals with 3-10 mg/kg TAT-dnRas blocked the migration of eosinophils from 464 +/- 91 x 10(3)/ml to 288 +/- 79 x 10(3)/ml with 3 mg/kg of TAT-dnRas (p < 0.05), and further decreased to 116 +/- 63 x 10(3)/ml after 10 mg/kg TAT-dnRas (p < 0.01). Histological examination demonstrated that inflammatory cell infiltration (largely eosinophils and mononuclear cells) and mucin production around the airways caused by OVA were blocked by TAT-dnRas. OVA challenge also caused airway hyperresponsiveness to methacholine, which was dose dependently blocked by treatment with TAT-dnRas. TAT-dnRas also blocked Ag-induced IL-4 and IL-5, but not IFN-gamma, production in lung tissue. Intranasal administration of IL-5 caused eosinophil migration into the airway lumen, which was attenuated by pretreatment with TAT-dnRas. By contrast, TAT-green fluorescent protein or dnRas lacking the TAT protein transduction domain did not block airway inflammation, cytokine production, or airway hyperresponsiveness. We conclude that Ras mediates Th2 cytokine production, airway inflammation, and airway hyperresponsiveness in immune-sensitized mice.  相似文献   

14.
Trypsin and mast cell tryptase can signal to epithelial cells, myocytes, and nerve fibers of the respiratory tract by cleaving proteinase-activated receptor 2 (PAR2). Since tryptase inhibitors are under development to treat asthma, a precise understanding of the contribution of PAR2 to airway inflammation is required. We examined the role of PAR2 in allergic inflammation of the airway by comparing OVA-sensitized and -challenged mice lacking or overexpressing PAR2. In wild-type mice, immunoreactive PAR2 was detected in airway epithelial cells and myocytes, and intranasal administration of a PAR2 agonist stimulated macrophage infiltration into bronchoalveolar lavage fluid. OVA challenge of immunized wild-type mice stimulated infiltration of leukocytes into bronchoalveolar lavage and induced airway hyperreactivity to inhaled methacholine. Compared with wild-type animals, eosinophil infiltration was inhibited by 73% in mice lacking PAR2 and increased by 88% in mice overexpressing PAR2. Similarly, compared with wild-type animals, airway hyperreactivity to inhaled methacholine (40 micro g/ml) was diminished 38% in mice lacking PAR2 and increased by 52% in mice overexpressing PAR2. PAR2 deletion also reduced IgE levels to OVA sensitization by 4-fold compared with those of wild-type animals. Thus, PAR2 contributes to the development of immunity and to allergic inflammation of the airway. Our results support the proposal that tryptase inhibitors and PAR2 antagonists may be useful therapies for inflammatory airway disease.  相似文献   

15.
Astragaloside IV, a new cycloartane-type triterpene glycoside extract of Astragalus membranaceus Bunge, has been identified for its potent immunoregulatory, antiinflammatory, and antifibrotic actions. Here we investigated whether astragaloside IV could suppress the progression of airway inflammation, airway hyperresponsiveness, and airway remodeling in a murine model of chronic asthma. BALB/c mice sensitized to ovalbumin (OVA) were chronically challenged with aerosolized OVA for 8 weeks. Astragaloside IV was orally administered at a dose of 50 mg x kg-1 x day-1 during each OVA challenge. Astragaloside IV treatment resulted in significant reduction of eosinophilic airway inflammation, airway hyperresponsiveness, interleukin (IL)-4 and IL-13 levels in bronchoalveolar lavage fluid, and total immunoglobulin E levels in serum. Furthermore, astragaloside IV treatment markedly inhibited airway remodeling, including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. In addition, the expression of transforming growth factor-beta1 in the lung was also reduced by astragaloside IV. These data indicate that astragaloside IV may mitigate the development of characteristic features in chronic experimental asthma.  相似文献   

16.
Galectins constitute an evolutionary conserved family that bind to β-galactosides. Increasing evidence shows that galectins are involved in many fundamental biological processes such as cellular communication, inflammation, differentiation and apoptosis. Changes in galectin-3 (Gal-3) expression are commonly seen in cancer and pre-cancerous conditions, and Gal-3 may be involved in the regulation of diverse cancer cell activities that contribute to tumourigenesis, cancer progression and metastasis. In addition, Gal-3 is a pro-inflammatory regulator in rheumatoid arthritis. Gal-3 has been shown to be involved in many aspects in allergic inflammation, such as eosinophil recruitment, airway remodeling, development of a Th2 phenotype as well as increased expression of inflammatory mediators. In an in vivo model it was shown that bronchoalveolar lavage (BAL) fluid from ovalbumin-challenged mice contained significantly higher levels of Gal-3 compared to control mice. The molecular mechanisms of Gal-3 in human asthma have not been fully elucidated. This review will focus on what is known about the Gal-3 and its role in the pathophysiological mechanisms of asthma to evaluate the potential of Gal-3 as a biomarker and therapeutic target of asthma.  相似文献   

17.
The increase in airway responsiveness induced by O3 exposure in dogs is associated with airway epithelial inflammation, as evidenced by an increase in the number of neutrophils (polymorphonuclear leukocytes) found in epithelial biopsies and in bronchoalveolar lavage fluid. We investigated in 10 healthy, human subjects whether O3-induced hyperresponsiveness was similarly associated with airway inflammation by examining changes in the types of cells recovered in bronchoalveolar lavage fluid obtained after exposure to air or to O3 (0.4 or 0.6 ppm). We also measured the concentrations of cyclooxygenase and lipoxygenase metabolites of arachidonic acid in lavage fluid. We measured airway responsiveness to inhaled methacholine aerosol before and after each exposure and performed bronchoalveolar lavage 3 h later. We found more neutrophils in the lavage fluid from O3-exposed subjects, especially in those in whom O3 exposure produced an increase in airway responsiveness. We also found significant increases in the concentrations of prostaglandins E2, F2 alpha, and thromboxane B2 in lavage fluid from O3-exposed subjects. These results show that in human subjects O3-induced hyperresponsiveness to methacholine is associated with an influx of neutrophils into the airways and with changes in the levels of some cyclooxygenase metabolites of arachidonic acid.  相似文献   

18.
Paradigms of eosinophil effector function in the lungs of asthma patients invariably depend on activities mediated by cationic proteins released from secondary granules during a process collectively referred to as degranulation. In this study, we generated knockout mice deficient for eosinophil peroxidase (EPO) to assess the role(s) of this abundant secondary granule protein in an OVA-challenge model. The loss of EPO had no effect on the development of OVA-induced pathologies in the mouse. The absence of phenotypic consequences in these knockout animals extended beyond pulmonary histopathologies and airway changes, as EPO-deficient animals also displayed OVA-induced airway hyperresponsiveness after provocation with methacholine. In addition, EPO-mediated oxidative damage of proteins (e.g., bromination of tyrosine residues) recovered in bronchoalveolar lavage from OVA-treated wild-type mice was <10% of the levels observed in bronchoalveolar lavage recovered from asthma patients. These data demonstrate that EPO activities are inconsequential to the development of allergic pulmonary pathologies in the mouse and suggest that degranulation of eosinophils recruited to the lung in this model does not occur at levels comparable to those observed in humans with asthma.  相似文献   

19.
Mitogen-activated protein kinase (MAPK) signaling cascade plays a pivotal role in the activation of inflammatory cells. Recent findings revealed that the activity of p42/44 MAPK (also known as extracellular signal-regulated kinase (ERK)) in the lungs was significantly higher in asthmatic mice than in normal controls. We hypothesized that inhibition of ERK activity may have anti-inflammatory effects in allergic asthma. BALB/c mice were sensitized with OVA and, upon OVA aerosol challenge, developed airway eosinophilia, mucus hypersecretion, elevation in cytokine and chemokine levels, up-regulation of VCAM-1 expression, and airway hyperresponsiveness. Intraperitoneal administration of U0126, a specific MAPK/ERK kinase inhibitor, significantly (p < 0.05) inhibited OVA-induced increases in total cell counts, eosinophil counts, and IL-4, IL-5, IL-13, and eotaxin levels recovered in bronchoalveolar lavage fluid in a dose-dependent manner. U0126 also substantially (p < 0.05) reduced the serum levels of total IgE and OVA-specific IgE and IgG1. Histological studies show that U0126 dramatically inhibited OVA-induced lung tissue eosinophilia, airway mucus production, and expression of VCAM-1 in lung tissues. In addition, U0126 significantly (p < 0.05) suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine in a dose-dependent manner. Western blot analysis of whole lung lysates shows that U0126 markedly attenuated OVA-induced tyrosine phosphorylation of ERK1/2. Taken together, our findings implicate that inhibition of ERK signaling pathway may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   

20.
Pharmacological inhibition or genetic disruption of cyclooxygenase (COX)-1 or COX-2 exacerbates the inflammatory and functional responses of the lung to environmentally relevant stimuli. To further examine the contribution of COX-derived eicosanoids to basal lung function and to allergic lung inflammation, transgenic (Tr) mice were generated in which overexpression of human COX-1 was targeted to airway epithelium. Although no differences in basal respiratory or lung mechanical parameters were observed, COX-1 Tr mice had increased bronchoalveolar lavage fluid PGE(2) content compared with wild-type littermates (23.0 +/- 3.6 vs 8.4 +/- 1.4 pg/ml; p < 0.05) and exhibited decreased airway responsiveness to inhaled methacholine. In an OVA-induced allergic airway inflammation model, comparable up-regulation of COX-2 protein was observed in the lungs of allergic wild-type and COX-1 Tr mice. Furthermore, no genotype differences were observed in allergic mice in total cell number, eosinophil content (70 vs 76% of total cells, respectively), and inflammatory cytokine content of bronchoalveolar lavage fluid, or in airway responsiveness to inhaled methacholine (p > 0.05). To eliminate the presumed confounding effects of COX-2 up-regulation, COX-1 Tr mice were bred into a COX-2 null background. In these mice, the presence of the COX-1 transgene did not alter allergen-induced inflammation but significantly attenuated allergen-induced airway hyperresponsiveness, coincident with reduced airway leukotriene levels. Collectively, these data indicate that COX-1 overexpression attenuates airway responsiveness under basal conditions but does not influence allergic airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号