首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between Fusarium oxysporum (cause of cotton wilt) and Cephalosporium maydis (cause of maize late-wilt) on cotton roots is associated with an appreciable decrease in the severity of the cotton wilt disease. Reduction in infection is more pronounced when the latter fungus precedes the former in the soil than when they are inoculated simultaneously. C. maydis exerts little or no such effect when it follows F. oxysporum in the soil. C. maydis grows on the surface of cotton roots near growing points as a root-surface inhabitant. Dark red lesions are produced but these disappear, as does the fungus, when the root becomes hardened either naturally or in response to the growth of the fungus on the surface. The presence of the fungus is associated with increased production of root laterals. Cotton plants, including those which may appear healthy, show only mild internal symptoms of Fusarium infection when grown in soil inoculated with the two fungi, suggesting that the decreased severity of wilt is largely due to increased tolerance of the plants to infection with the disease as a result of increased number of root laterals. It is also possible that cotton roots with C. maydis on their surface become less suitable for the progress of F. oxysporum. F. oxysporum produces in culture a metabolite inhibitory to C. maydis. This may partly account for the little effect that the latter fungus exerts on the severity of wilt when it follows F. oxysporum in the soil. It appears that the interaction between F. oxysporum and C. maydis does not affect the pathogenicity of the latter fungus to maize.  相似文献   

2.
Screenhouse studies were conducted to investigate the effects of Fusarium oxysporum f. sp. glycines and Sclerotium rolfsii on the pathogenicity of Meloidogyne incognita race 2 on soybean and the influence of the nematode on wilt incidence and growth of soybean. The interaction of each fungus with the nematode resulted in reduced shoot and root growth. Final nematode population was also reduced with concomitant inoculation of nematode and fungus or inoculation of fungus before nematode. While M. incognita suppressed wilt incidence in two nematode-susceptible cultivars of soybean (TGX 1485-2D and TGX 1440-IE), it had limited effect on wilt incidence in the nematode resistant cultivar of soybean (TGX 1448-2E). When F. oxysporumwas inoculated with the nematode, the mean number of nematodes that penetrated soybean roots decreased by 75% in TGX 1448-2E, 68% in TGX 1485-1D and 65% in TGX 1440-1E. Similarly when the soil was treated with S. rolfsii, the number decreased by 78% in TGX 1448-2E, 77% in TGX 1485-1D and 68% in TGX 1440-1E. The nematode did not develop beyond second-stage juvenile in TGX-1448-2E.  相似文献   

3.
The purpose of this research was to determine whetherBacillus subtilis,nonpathogenicFusarium oxysporum,and/orTrichoderma harzianum,applied alone or in combination to chickpea (Cicer arietinumL.) cultivars ‘ICCV 4’ and ‘PV 61’ differing in their levels of resistance to Fusarium wilt, could effectively suppress disease caused by the highly virulent race 5 ofFusarium oxysporumf. sp.ciceris.Seeds of both cultivars were sown in soil amended with the three microbial antagonists, alone or in combination, and 7 days later seedlings were transplanted into soil infested with the pathogen. All three antagonistic microorganisms effectively colonized the roots of both chickpea cultivars, whether alone or in combination, and significantly suppressed Fusarium wilt development. In comparison with the control, the incubation period for the disease was delayed on average about 3 days and the final disease severity index and standardized area under the disease progress curve were reduced significantly between 14 and 33% and 16 and 42%, respectively, by all three microbial antagonists. Final disease incidence only was reduced byB. subtilis(18–25%) or nonpathogenicF. oxysporum(18%). The extent of disease suppression was higher and more consistent in ‘PV 61’ than in ‘ICCV 4’ whether colonized byB. subtilis,nonpathogenicF. oxysporum,orT. harzianum.The combination ofB. subtilis+T. harzianumwas effective in suppressing Fusarium wilt development but it did not differ significantly from treatments with either of these antagonists alone. In contrast, the combination ofB. subtilis+ nonpathogenicF. oxysporumtreatment was not effective but either antagonist alone significantly reduced disease development.  相似文献   

4.
Biological control experiments were conducted with the lytic enzyme-producing fungusPenicillium purpurogenumagainst the plant pathogensMonilinia laxaandFusarium oxysporumf. sp.lycopersici.Applications ofP. purpurogenumto peach shoots previously inoculated withM. laxareduced lesion length and extent of pathogen colonization of shoots by 90 and 80% (P ≤ 0.05), respectively, comparable to the level of disease control obtained with the fungicide captan. Disease severity in tomato plants inoculated withF. oxysporumf. sp.lycopersiciwas decreased by 30% (P ≤ 0.05) with the biological treatment. The fungusP. purpurogenumproduced β-1,3-glucanase and chitinase activities in liquid culture that were inducible by cell walls and live mycelium ofM. laxabut not ofF. oxysporumf. sp.lycopersici.Crude filtrates or crude enzyme preparations ofP. purpurogenumcultures with lytic enzyme activities produced lysis of hyphae and spores ofM. laxaandF. oxysporumf. sp.lycopersici.These lytic effects were strong inM. laxaand ended in complete dissolution of mycelium. The induction of lytic enzymes byM. laxaand the effects of lytic enzymes on mycelia of the pathogens in relation to the different degrees of biological control obtained are discussed.  相似文献   

5.
Greenhouse and laboratory experiments were conducted to determine the effects of various physical factors on the assessment of disease caused by Sclerotium rolfsii using field and artificially infested soils. Lentil(Lens esculenta Moench) seedlings growing in trays or pots with sand were inoculated by surrounding them with a layer of soil infested with the pathogen. The number of dead plants was maximal within a 10-day period following inoculation. Seedling mortality increased with the number of sclerotia in the soil to a maximum that depended on seedling spacing, depth of the soil layer, and soil type.  相似文献   

6.
Pathogenicity tests of twenty-six fungal isolates were tested on peanut plants (Giza 5 cv.) and the results revealed that, Fusarium oxysporum isolate (No. I) followed by F. solani (No. II) then F. moniliforme (No III) significantly caused highest incidence of root rot disease. Also, F. moniliforme (No III) followed by F. solani (No II) then F. oxysporum (No I) gave the highest incidence of pod rot disease. The effectiveness of vescular arbuscular-mycorrhiza (VAM) at different application rates on the incidence of root rot, pod rot diseases and plant growth parameters of peanut was studied. All soil treatments with each rate of VAM significantly reduced root and pod rot diseases compared with control (rate 0%). The best reduction in the severity of both diseases with VAM was found at the rate of 3%. Application of rhizobacterin, microbin and cerialin biofertilisers at the different concentrations decreased the severity of both root rot and pod rot severity diseases compared with non-treated seeds. The greatest reduction in both diseases was achieved at a concentration of 8/100?g seeds. The highest number of pods and fresh weight (g) was achieved in seed supplemented with each biofertiliser at concentration of 8/100?g seed.  相似文献   

7.
Wang  D.  Kurle  J.E.  Estevez de Jensen  C.  Percich  J.A. 《Plant and Soil》2004,258(1):319-331
Soybean root rot, caused primarily by Fusarium solani f. sp. phaseoli in a complex with F. oxysporum and Rhizoctonia solani, has become an increasing problem for soybeans, dry beans, and other rotation crops in central Minnesota due to soil conditions associated with reduced tillage. This study was conducted, in two field sites in central Minnesota located near Staples and Verndale, to develop methods for nondestructive assessment of root rot severity using plant radiometric properties. Soybean canopy reflectance was measured with a hand-held multi-spectral radiometer. Prior to the radiometer measurements, attempts were made to create differing root rot situations with moldboard or chisel tillage, and with or without a biological seed treatment. Root rot severity was estimated using a visual disease severity scale. Colony-forming units (CFU) were determined to estimate soil populations of pathogenic F. solani and F. oxysporum. Results from the Verndale site consistently showed significant treatment effects in the measured canopy radiometric parameters, and in the visual disease rating and yield (significant for seed treatment). Values of a simple ratio vegetation index from this site exhibited negative relationships with disease rating and F. oxysporum CFU, and a positive linear relationship with yield. Treatment effects were generally not significant at the Staples site because of low initial F. oxysporum populations. The results indicate that remote sensing is potentially a rapid, nondestructive means for assessment of root rot diseases in soybean.  相似文献   

8.
Three hundred and seventy two isolates belonging to the genusStreptomyces were isolated and screened for chitinase production.Streptomyces plicatus was found to be the best producer. The highest chitinase production were incubated for 3 d at 30 °C on buffered culture medium (pH 8.0) containing chitin plus sucrose and calcium nitrate as carbon and nitrogen sources.S. plicatus chitinase had a highly significant inhibitory effect on spore germination, germ tube elongation and radial growth ofFusarium oxysporum f.sp.lycopersict., Altrernaria alternata andVerticillium albo-atrum, the causal organisms ofFusarium wilt, stem canker andVerticillium wilt diseases of tomato. Application ofS. plicatus to the root system of tomato plants before transplantation markedly protected tomato plants against the tested phytopathogenic fungiin vivo.  相似文献   

9.
A root rot and wilt disease of Anigozanthos manglesii (Kangaroo Paw) grown in greenhouses in Israel, for exporting as cut flowers to Europe, was characterized. Pythium myriotylum (Drechs.) and Rhizoctonia solani (Kühn) were the prevalent pathogens in diseased plants collected from commercial greenhouses. Fusarium oxysporum, Fusarium spp. and Myrothecium sp. were also isolated, but P. myriotylum or R. solani were not detected in samples from symptomless plants in tissue cultures (Australian origin) or plants at different stages in the nursery; non‐pathogenic F. oxysporum and Fusarium spp. were detected in several samples. In pathogenicity tests carried out in pots, plant mortality occurred 7 days after inoculation with P. myriotylum. In a field experiment carried out in methyl bromide‐fumigated soil, the incidence of dead plants following inoculation with P. myriotylum alone was 22% 10 days after inoculation, increasing to 78% after an additional 25 days. The incidence of dead plants following inoculation with R. solani alone was only 5% and in plants inoculated simultaneously with both pathogens, disease incidence was 88% 35 days after inoculation. Mortality reached 90–100% in plants inoculated with P. myriotylum, either singly or combined with R. solani 60 days after inoculation, whereas in plants inoculated with R. solani it was 5%. The maximum mortality in plants inoculated with R. solani was 25%, 76 days after inoculation. These results clearly demonstrate that P. myriotylum was the dominant pathogen in the root rot and wilt of A. manglesii.  相似文献   

10.
Sclerotium rolfsii, a destructive soil pathogen common in tropical soils, was found to cause stipe rot of the fruit bodies ofPleurotus tuber-regium. The rot occurs only when the pathogen is inoculated into the soil before seeding and before primordial emergence. It caused 100% inhibition of primordia and sporophore formation when the soil was inoculated before seeding and highly reduced yield when the soil was inoculated with the pathogen just before primordial emergence. However, no fruit body rot occurred on the mushroom when the soil was inoculated with the pathogen after primordial emergence from the soil.  相似文献   

11.
Antagonism betweenFusarium udum Butler causing wilt of pigeon-pea (Cajanus cajan (L.) Millsp.) and the saprophytic microflora of the root region of the host was studied with reference to colony interaction, hyphal interference, volatile and non-volatile metabolites and staling growth products. Studies were extended to screen potential antagonists against the wilt pathogen in soil. Aspergillus flavus, A. niger, A. terreus, Penicillium citrinum andMicromonospora globosa (an actinomycete) were antagonistic againstF. udum, whereas the pathogen parasitized and killedAspergillus luchuensis, Cunninghamella echinulata, Curvularia lunata, Mortierella subtilissima andSyncephalastrum racemosum. The pattern of growth of microorganisms on nutrient agar staled by rhizosphere soil inocula of healthy or wilted pigeon-pea plants was found to be different.F. udum colonized and grew on nutrient agar staled by the rhizosphere inoculum of the wilted plants upto 120h of incubation. However, it could not colonise and grow on the nutrient agar staled by rhizosphere microflora of healthy plants after 48h of incubation because of the presence of antagonists likeA. niger, A. flavus, A. terreus and a few species ofPenicillium in the soil inoculum. When pure cultures in soil ofF. udum was mixed with those of antagonists in different ratios,A. niger, A. flavus andM. globosa significantly suppressed the population ofF. udum, whereasA. terreus markedly reduced the population. When inoculated in soil, the antagonists exhibited a high fungistatic activity againstF. udum.  相似文献   

12.
Root-rotted samples of grapevine cv. superior were collected from Nobaria province, Beheira Governorate, Egypt. Fusarium oxysporum Schlech. was the most fungal causing root-rot syndrome of grapevine and directly affected the yield productivity. Seven isolates of Streptomyces were isolated from grapevine rhizospheric soil and screened for antagonistic activities against F. oxysporum on dual culture plate. All isolates showed antifungal activity, but isolate No. 1 exhibited the highest activity. It was identified as Streptomyces alni according to morphological, cultural, physiological and biochemical studies. The properties of the antagonism were revealed by scanning electron microscopy (SEM) examination of F. oxysporum and S. alni on PDA medium. The forms of antagonism found in this study according to the interaction between the S. alni and the pathogen indicated a hyperparasite, including inhibition of fungal growth and colonisation of S. alni over F. oxysporum hyphae. Also, malformation and lysis of F. oxysporum hyphae and conidiophores were observed. Conidia and normal branches of fungal hyphae were absent. Greenhouse and field studies were performed to evaluate the ability of S. alni and some commercial biofertilisers incorporated into the soil for root-rot control. Pot trails indicated that antagonistic S. alni isolate and biofertilisers i.e. blue green algae, phosphoren and rhizobacterin reduced the root-rot incidence of grapevine plants Cv. superior. Soil treatment before sowing with 50 ml of S. alni suspension (1 × 108 spore/ml) + 50 g of rhizobacterin for each pot was the best and significant treatment reduced root-rot of grapevine plants. Also, the total count of F. oxysporum in rhizosphere soil of grapevine treated plants was reduced compared with control. Under field conditions, drenching soil of diseased grape trees with a spore suspension of S. alni (1 × 108 spore/ml) 200 ml/tree + 250 g/tree of rhizobacterien caused a significant reduction in root rot of treated grapevine trees as well as high fruit yield/tree when compared with other treatments. The obtained results suggest that S. alni could be used successfully in combination with biofertilisers, as environmentally safe, for controlling root-rot of grapevine and other soil-borne plant pathogens especially with organic farming systems.  相似文献   

13.
Bacteria were obtained from soybean rhizosphere soil. And control effect of a tested isolate for controlling soybean root rot infected by Fusarium oxysporum was evaluated. The selected bacterial isolate exhibited the greatest inhibition of F. oxysporum in the laboratory and substantially reduced soybean root rot in pot-controlled assays.  相似文献   

14.
This study analysed the interspecific relationships between the dominant arbuscular mycorrhizal (AM) fungus, Funneliformis mosseae, and the major soybean root rot pathogen, Fusarium oxysporum, in the rhizosphere soil of continuous cropped soybean. Our aim was to provide theoretical evidence on the AM fungi to overcome the obstacles of soybean continuous cropping. We selected soybean cultivars, including Kenfeng 16 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar), and sowed in the soybean continuous cropping soil under different treatments. The infection status of the soybean roots during the branching period by Fu. mosseae and F. oxysporum was estimated using the standard polymerase chain reaction method, as well as their colonisation status in rhizosphere soil. The AM fungal colonisation rates and F. oxysporum disease incidence of soybean roots were determined, respectively. Quantitative polymerase chain reaction was applied to analyse the DNA content of Fu. mosseae and F. oxysporum to investigate the relationship between Fu. mosseae and F. oxysporum. The results show that both Fu. mosseae and F. oxysporum can infect the soybean roots during the branching period and colonise the rhizosphere. However, the DNA content of F. oxysporum clearly decreased in soybean root and rhizosphere samples after the inoculation with Fu. mosseae. In addition, the disease incidence of F. oxysporum significantly decreased after inoculation with Fu. mosseae, which might indicate inhibitive effects of Fu. mosseae over F. oxysporum.  相似文献   

15.
Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4–16 weeks after inoculation), root colonization did not. However, in the field (17–33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.  相似文献   

16.
The effect of the placement of inoculum of Fusarium oxysporum at two soil depths, and the sequences of inoculations with Meloidogyne arenaria and Fusarium oxysporum on root growth and development of root disease in Trifolium subterraneum L. (subterranean clover) were investigated. The timing of infection and the proximity of root tips of the host root system to infection by M. arenaria and F. oxysporum appeared to be the major determining factors of root growth and of disease development in plants exposed to the pathogens. Immediate contact of roots with F. oxysporum (where the fungus was placed at seed level of 10 mm depth) appeared to result in more severe effects on roots in the presence of the nematode than later infection by the fungus placed at 30 mm depth. The production of galls by the nematode and early infection by F. oxysporum at 10 mm depth resulted in a severe inhibition of root growth, particularly of the lateral roots. But no such growth inhibition was evident when F. oxysporum and M. arenaria were introduced together at the lower depth of 30 mm. The lowest density of M. arenaria inoculum was sufficient to cause severe root rot if F. oxysporum was present at the host seed level. With the fungus at 30 mm depth, however, the expression of root rot appeared to be influenced by the inoculum level of the nematode. In sequential inoculation with F. oxysporum or M. arenaria, the organism added 2 weeks later had little or no effect on root development. The first organism (M. arenaria or F. oxysporum) to infect the germinated seedlings was the main cause of root growth inhibition. The organism that came into contact with the roots 2 weeks later had little or no effect on the roots. Concurrent infection by F. oxysporum and M. arenaria resulted in less M. arenaria gall production on the tap root system than those added with the nematode alone or in advance of the fungus.  相似文献   

17.

During years 2001, 2002 and 2003 the gravity of the Fusarium wilt in 1000 hectares of melon culture was evaluated in Colima (Mexico). In spite of the soil disinfections with methyl bromide, the losses could reach 25% of the final production. The analysis of 4 soil samples from the fields with ill plants, in a selective medium for Fusarium, allowed to detect the presence of F. oxysporum. By means of the presented technique “soil phytopathometry”, 31 isolates of F. oxysporum f. sp. melonis were obtained from the soil samples. The isolates were inoculated on melon plants to evaluate their pathogenicity. The 31 isolates inoculated, produced the symptoms of chlorosis and wilting, in melon cultivars that allowed us to affirm that all isolates were race 1 of F. oxysporum f. sp. melonis. Being this the first news of the presence of F. oxysporum f. sp. melonis in the state of Colima (Mexico).  相似文献   

18.
Biocontrol of wilt disease complex of pea caused by the root-knot nematode Meloidogyne incognita and Fusarium oxysporum f. sp. pisi was studied on pea (Pisum sativum L.) using plant growth-promoting rhizobacterium Pseudomonas fluorescens and root nodule bacterium Rhizobium sp. Inoculation of M. incognita and F.oxysporum alone caused significant reductions in plant growth over un-inoculated control. Reduction in plant growth caused by M. incognita was statistically equal to that caused by F. oxysporum. Inoculation of M. incognita plus F. oxysporum together caused a greater reduction in plant growth than the sum of damage caused by these pathogens singly. Inoculation of P. fluorescens and Rhizobium sp. individually or both together increased plant growth in pathogen inoculated and un-inoculated plants. Inoculation of P. fluorescens to pathogen-inoculated plants caused a greater increase in plant growth than caused by Rhizobium sp. Application of Rhizobium plus P. fluorescens caused a greater increase in plant growth than caused by each of them singly. Inoculation of P.fluorescens caused higher reduction in galling and nematode multiplication than caused by Rhizobium sp. Use of Rhizobium plus P. fluorescens caused higher reduction in galling and nematode multiplication than their individual inoculation. Plants inoculated with both pathogens plus Rhizobium showed less nodulation than plants inoculated with single pathogen plus Rhizobium. Inoculation of Rhizobium plus P. fluorescens resulted in higher root-nodulation than inoculated only with Rhizobium. Wilting indices were 4 and 5, respectively, when plants were inoculated with F. oxysporum and F. oxysporum plus M. incognita. Wilting indices were reduced maximum to 1 and 2, respectively, when plants inoculated with F.oxysporum and plants with both pathogens were treated with P. fluorescens plus Rhizobium.  相似文献   

19.
We report an in vitro selection method that has led to isolation of Fusarium wilt and Alternaria leaf spot disease-tolerant plantlets in cotton (Gossypium hirsutum L. cv. SVPR2). Embryogenic callus was isolated from hypocotyl explants of cotton cultured on 5–50% Fusarium oxysporum culture filtrate-fortified callus induction medium. Somatic embryos tolerant to fungal culture filtrate (FCF) were isolated from this embryogenic callus on somatic embryo regeneration medium fortified with 40% FCF. Sixteen plantlets were selected as FCF-tolerant from 34 somatic embryos tested, which corresponds to about 47% success rate. The FCF-tolerant plants were analyzed for disease tolerance by challenging them with spores of F. oxysporum and Alternaria macrospora. Four plants were selected as F. oxysporum tolerant from a total of 24 plants tested. The selected plants showed an enhanced survival rate compared with the control when they were grown in earthen pots inoculated with 1 × 105 spores/mL of F. oxysporum. From the FCF-tolerant plants, another nine randomly selected plantlets were challenged with spores of A. macrospora in order to test their tolerance to Alternaria leaf spot disease. The number of lesions per leaf significantly decreased from 8.2 to 0.9 and the lesion lengths were also reduced from 2.8 to 1.2 mm per leaf spot in these plants. Electrophoresis analysis of extracellular proteins from the FCF-tolerant plants showed enhanced secretion of proteins in the range of 24–36 kDa. Isozyme analysis by of FCF-tolerant plants by using native gels showed the presence of chitinase. Quantitative analysis showed that there was 13-fold increase in a chitinase activity in the selected FCF-tolerant plants compared to the control plants. Our results show that over-expression of chitinase enzyme leads to enhanced disease resistance against F. oxysporum and A. macrospora.  相似文献   

20.
Summary Four strains ofRhizobium trifolii were individually inoculated to pots containing sterilized sand vermiculite mixture, half of which were seeded with red clover and half not. Pots were maintained in an ordinary glasshouse and watered with tap water.Phage was first detected after 4 months, and almost all pots contained one or more phages againstRhizobium trifolii after 9 months. The presence of plants increased the titer of phages in some pots inoculated withR. trifolii, but had no effect on the number of different phages.The pots also contained phages against soil bacteria other than Rhizobium indicating that phages are spread readily and constitute a normal part of the life cycle of soil bacteria.The number of different phages isolated from the pots was affected by the strain of Rhizobium used as inoculum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号