首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop an efficient system for a high level expression of a human cellular thyroid hormone binding protein (p55) in eukaryotic cells, a full-length p55 cDNA was inserted into a Harvey murine sarcoma virus-derived vector (pHTBr) and transfected into mouse NIH 3T3 cells. The expressed p55 has a molecular weight of 55,000 and is recognized by the human specific anti-p55 monoclonal antibody. Similar to the endogenous p55, the expressed p55 is localized on endoplasmic reticulum and nuclear envelope. Moreover, p55 was specifically labeled by N-bromoacetyl-3,3',5-triiodo-L-thyronine. Thus, the expressed p55 is structurally indistinguishable from the endogeneous p55. pHTBr was packaged into a virus with the aide of an amphotropic virus. Infection by pHTBr-containing virus yielded a 2-11 fold higher expression than the endogeneous p55 in NIH3T3, rat GH3, human HepG2 cells and a mouse monoclonal antibody secreting hybridoma.  相似文献   

2.
3.
A cDNA clone encoding 55-kDa multifunctional, thyroid hormone binding protein of rabbit skeletal muscle sarcoplasmic reticulum was isolated and sequenced. The cDNA encoded a protein of 509 amino acids, and a comparison of the deduced amino acid sequence with the NH2-terminal amino acid sequence of the purified protein indicates that an 18-residue NH2-terminal signal sequence was removed during synthesis. The deduced amino acid sequence of the rabbit muscle clone suggested that this protein is related to human liver thyroid hormone binding protein, rat liver protein disulfide isomerase, human hepatoma beta-subunit of prolyl 4-hydroxylase and hen oviduct glycosylation site binding protein. The protein contains two repeated sequences Trp-Cys-Gly-His-Cys-Lys proposed to be in the active sites of protein disulfide isomerase. Northern blot analysis showed that the mRNA encoding rabbit skeletal muscle form of the protein is present in liver, kidney, brain, fast- and slow-twitch skeletal muscle, and in the myocardium. In all tissues the cDNA reacts with mRNA of 2.7 kilobases in length. The 55-kDa multifunctional thyroid hormone binding protein was identified in isolated sarcoplasmic reticulum vesicles using a monoclonal antibody specific to the 55-kDa thyroid hormone binding protein from rat liver endoplasmic reticulum. The mature protein of Mr 56,681 contains 95 acidic and 61 basic amino acids. The COOH-terminal amino acid sequence of the protein is highly enriched in acidic residues with 17 of the last 29 amino acids being negatively charged. Analysis of hydropathy of the mature protein suggests that there are no potential transmembrane segments. The COOH-terminal sequence of the protein, Arg-Asp-Glu-Leu (RDEL), is similar to but different from that proposed to be an endoplasmic reticulum retention signal; Lys-Asp-Glu-Leu (KDEL) (Munro, S., and Pelham, H.R.B. (1987) Cell 48, 899-907). This variant of the retention signal may function in a similar manner to the KDEL sequence, to localize the protein to the sarcoplasmic or endoplasmic reticulum. The positively charged amino acids Lys and Arg may thus interchange in this retention signal.  相似文献   

4.
We have localized p55, a thyroid hormone-binding protein found in the endoplasmic reticulum in cultured cells, in samples of normal human and monkey tissues, using a monoclonal antibody with cryostat sections and immunoperoxidase histochemistry. Large amounts of p55 were found in many tissues, generally corresponding to the amount of endoplasmic reticulum contained in each cell type. Intense localization of p55 was found in cells of the anterior and intermediate pituitary lobes, in epithelial cells of thyroid follicles, in the glandular epithelium of mammary gland, in hepatocytes, in Paneth cells and Brunner's glands in duodenum, in acinar cells of pancreas, in adrenal cortical cells, and in scattered interstitial fibroblastic cells in many tissues. These results suggest a potential role for thyroid hormone and p55 in regulating protein synthesis or secretion in multiple organs.  相似文献   

5.
We have previously purified a cellular thyroid hormone binding protein (p58) from a human carcinoma cell line [Kitagawa, S., Obata, T., Hasumura, S., Pastan, I., & Cheng, S.-y. (1987) J. Biol. Chem. 262, 3903-3908]. In the present study, the binding characteristics, the molecular properties, and subcellular localization of p58 were further characterized. Binding of the purified p58 to thyroid hormones was examined. Analysis of binding data indicates that p58 binds to 3,3',5-triiodo-L-thyronine (T3) with a Kd of 24.3 +/- 0.3 nM and n = 0.71. p58 binds to L-thyroxine similarly as to T3. However, D-T3 and reverse-T3 bind to p58 with an affinity 4- and 20-fold less than that of T3, respectively. By use of the purified p58 as an immunogen, two hybridomas, J11 and J12, secreting monoclonal antibodies to p58 were isolated; both antibodies belong to the IgG1K subclass. J12 recognizes p58 from human, monkey, dog, hamster, and rat, but not mouse. J11 exhibits a similar species specificity except that it does not react with p58 from hamster. With these antibodies, p58 was found to be not posttranslationally modified by glycosylation, sulfation, or phosphorylation. It has a cellular degradation rate t1/2 congruent to 2.1 h. Immunocytochemical studies indicate that p58 is located in the nonmembranous cytoplasm (cytosol). These results are consistent with subcellular fractionation studies which show that greater than 95% of J11 and J12 reactivity and T3 binding activity can be found in the 110,000g supernatant.  相似文献   

6.
Thyroid peroxidase (TPO) and thyroglobulin (TG) represent two major glycoproteins of thyroid follicular cells performing biological functions such as iodination, transcytosis of thyroglobulin, and formation of thyroid hormones. They are involved in thyroid autoimmunity and thyroid inborn metabolic disorders. Studying these processes at a molecular level includes the determination of their precise intracellular distribution. An evaluation of the relative concentrations of TG and TPO in different subcellular compartments was carried out in stimulated human follicular cells using thin-frozen sections and the immunogold technique. It is documented that TG is transported from the endoplasmic reticulum and the Golgi apparatus to the follicular lumen by transport vesicles; most of it being present in the expanded endoplasmic reticulum throughout the cytoplasm. On the other hand, gold particles indicating TPO are adjacent to the membranes of the exocytotic pathway. They do not label the basolateral membrane but show the strongest density in the nuclear envelope and the apical membrane. The labeling density of TPO is about four times higher in the nuclear envelope than in the endoplasmic reticulum throughout the cytoplasm. In contrast, TG is concentrated three times higher in the rough endoplasmic reticulum throughout the cytoplasm than in the nuclear cisternae. Our results give the first quantitative evidence that TPO and TG are concentrated in different subcompartments of the endoplasmic reticulum. Because previous studies demonstrated the nuclear envelope as the site where the synthesis of endogenous peroxidase (Br?kelmann, J., D. W. Fawcett, Biol. Reprod. 1, 59-71 (1969)) begins, we suggest that synthesis of these functionally related proteins happens in specialized parts of the endoplasmic reticulum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have previously characterized a cellular thyroid hormone-binding protein (p55) that is found concentrated on the lumenal face of the endoplasmic reticulum and nuclear envelope (Cheng, S.-y., Hasumura, S., Willingham, M.C., and Pastan, I. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 947-951). To understand the role p55 plays in thyroid hormone action, we examined the regulation of p55 by 3,3',5-triiodo-L-thyronine (T3). Rat pituitary tumor GH3 cells cultured in regular medium, thyroid hormone-depleted medium (Td medium), or Td medium supplemented with 50 nM T3 (Td + T3 medium) were metabolically labeled with [35S]methionine and immunoprecipitated with antibodies against p55. Treatment with T3 caused a fall in p55 levels. Poly(A+) RNA from cells cultured in regular, Td, or Td + T3 medium was hybridized to a cDNA from p55. T3 withdrawal or addition had no effect on p55 mRNA levels. Furthermore, the initial rates of synthesis of p55 from cells cultured in regular, Td, and Td + T3 were found to be similar. However, analysis of the decay curves from cells in which p55 was pulse-labeled with [35S]methionine indicated that p55 is 2-fold less stable in T3 containing medium. These results indicated that down-regulation of p55 by T3 occurs at the post-translational level. Since DNA sequence analysis indicates that p55 is identical to protein disulfide isomerase and the beta-subunit of prolyl-4-hydroxylase, T3 may mediate its effects on the synthesis, secretion, and/or transport of proteins via p55.  相似文献   

8.
The envelope membrane of rat liver nuclei contains a P-type Ca(2+)-transporting pump, revealed by the presence of a Ca(2+)-stimulated phosphoenzyme. The level of the nuclear phosphoenzyme in autoradiographed polyacrylamide gels was decreased by lanthanum, as typically observed in the endoplasmic reticulum Ca2+ pump. It was also decreased by thapsigargin and 2,5-di-(tert-butyl)-1,4-benzohydroquinone, two accepted inhibitors of the endoplasmic reticulum Ca(2+)-ATPase. Comparative proteolysis of the phosphorylated enzyme of liver microsomes (endoplasmic reticulum) and nuclear membranes revealed an identical cleavage pattern. In addition, antibodies raised against the endoplasmic reticulum Ca2+ pump cross-reacted with the pump in the nuclear membranes. The findings show that nuclear membranes contain a Ca(2+)-transporting pump closely related to that of the endoplasmic reticulum, if not identical to it. The pump is likely to be involved in the control of nuclear free calcium.  相似文献   

9.
The intracellular distribution of non specific esterases in various villous cells of mouse jejunum was investigated using two substrates, 8-acetoxiquinoline (Q-O-2) and 8-acetyl mercaptoquinoline (Q-S-2) respectively. With the more selectively staining Q-S-2 a uniform reaction was demonstrated in all enterocytes which was mainly located in the endoplasmic reticulum and the nuclear envelope. Possibly it is a matter of a single enzyme being hardly detachable from the membranes. With the non selectively staining Q-O-2 several esterases were demonstrated Es-2, adn Es-9 among them. The main reaction was found in columnar and Goblet cells, in both at all cellular membranes and in the mitochondrial matrix, additionally in cisterns and vesicles of the endoplasmic reticulum and of the Golgi apparatus and at lipid droplets of the former, finally at mucous droplets of the latter. An extracellular reaction was found in the intercellular cleft and between the microvilli of the brush border.  相似文献   

10.
We previously performed a gene-trap screen in mouse cells with particular focus on clones in which the trapped protein-reporter fusions localise to compartments of the nucleus. Here we describe one such gene-trap line in which the fusion protein showed a unique, patchy distribution at the nuclear periphery. We have cloned the endogenous mouse and human cDNAs encoding the protein trapped in the F9/3D3 cell line. The predicted proteins (64 kDa) encoded by this novel gene are highly conserved and similar to an unpublished rat protein in sequence databases called p80 or lyric. The amino acid sequence of 3D3/lyric indicates that it may be a type-1b membrane protein with a single transmembrane domain (TMD). Antibodies against the endogenous protein recognise multiple isoforms, consistent with multiple 3D3/lyric mRNAs detected by Northern blot analysis. Subcellular fractionation and immunostaining show that 3D3/lyric is located not only principally in the endoplasmic reticulum (ER), but also in the nuclear envelope (NE), which is contiguous with this compartment. Furthermore, 3D3/lyric is also found in the nucleolus and is therefore a rare example of a protein that suggests a possible connection between this compartment and the endoplasmic reticulum.  相似文献   

11.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

12.
Esterase XXIII     
Summary The intracellular distribution of non specific esterases in various villous cells of mouse jejunum was investigated using two substrates, 8-acetoxiquinoline (Q-O-2) and 8-acetyl mercaptoquinoline (Q-S-2) respectively. With the more selectively staining Q-S-2 a uniform reaction was demonstrated in all enterocytes which was mainly located in the endoplasmic reticulum and the nuclear envelope. Possibly it is a matter of a single enzyme being hardly detachable from the membranes. With the non selectively staining Q-O-2 several esterases were demonstrated Es-2, and Es-9 among them. The main reaction was found in columnar and Goblet cells, in both at all cellular membranes and in the mitochondrial matrix, additionally in cisterns and vesicles of the endoplasmic reticulum and of the Golgi apparatus and at lipid droplets of the former, finally at mucous droplets of the latter. An extracellular reaction was found in the intercellular cleft and between the microvilli of the brush border.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

13.
Thyroid hormone showed specific binding ability to mouse granulosa cells from immature mice, primed with post menopausal gonadotropin. Saturation of specific binding sites was reached by 2 nM concentration of the hormone. A Scatchard analysis of thyroid hormone binding exhibited a Kd of 42 x l0-9M/mg nuclear DNA and a maximum binding capacity of 1 pmol/mg nuclear DNA. Competitive inhibition studies showed thyroid hormone binding to be analogue specific. Addition of 100 ng of thyroid hormone to granulosa cell incubations (1 x 106 cells/well) resulted in a three-fold increase in cellular protein synthesis. Thyroid hormone resulted in a dose dependant increase in progesterone release from granulosa cell. It also stimulated the formation of pregnenolone (83%) and progesterone (81%) from radiolabeled cholesterol as compared to control. This stimulation by thyroid hormone was completely inhibited by cycloheximide. Results indicate a direct effect of thyroid hormone on granulosa cells, its binding to nuclei causing an increase in steroidogenesis through the mediation of protein(s).  相似文献   

14.
Several lines of evidence provided by other workers indicate that within the same species thyroid hormone binding protein, the beta-subunit of prolyl hydroxylase, and protein disulfide isomerase are the same protein. We sought to determine if glycosylation site binding protein, a lumenal protein of the endoplasmic reticulum, also has the same primary structure. To accomplish this the level of glycosylation site binding protein (GSBP) activity, measured by photolabeling with a glycosylation site peptide probe, was carried out in preparations of 3T3 cells and in E. coli transformed with human thyroid hormone binding protein cDNA. The results strongly support the idea that GSBP is identical to these other lumenal proteins of the endoplasmic reticulum.  相似文献   

15.
The membranes of the cell surface, the endoplasmic reticulum, outer and inner mitochondrial leaflet and nuclear envelope were isolated from three human lymphoblastoid cell lines. Membrane components were separated by dodecyl sulfate polyacrylamide gel electrophoresis and the gels incubated with the radioiodinated lectins from lentil, castor bean, scarlet runner bean, gorse seed and Roman snail. After gel slicing and counting, the molecular weights of the lectin binding sites were determined. About 20 glycoproteins were identified as constituents of the plasma membrane, a similar glycoprotein distribution was observed in the endoplasmic reticulum. The outer mitochondrial membrane contained some impurities from the plasma membrane, the inner mitochondrial membrane lacked specific lectin receptors. Two prominent glycoproteins with molecular weights of 70 000 and 60 000 were identified with the castor bean lectin in the nuclear envelope.  相似文献   

16.
Cyclophilin C‐associated protein (CyCAP) or Mac‐2 binding protein has been identified as a binding protein for cyclophilin C in mice and for Mac‐2 (galectin‐3) in human, suggesting its multiple binding activity to proteins. In the present study, using specific anti‐rat‐CyCAP antibody, we found that CyCAP colocalizes with calnexin at the location near the nuclear envelope, however CyCAP does not have colocalization with calreticulin. In senescent fibroblasts and interferon‐gamma (IFNγ) treated fibroblasts, both calnexin and CyCAP form larger polymers and are released from the endoplasmic reticulum (ER) through the cellular membrane to the extracellular area. Immunoprecipitation studies further confirm that the release of calnexin is through binding to CyCAP. Further, we found that tissue transglutaminase (tTG) protein is decreased, however not at the RNA level, in CyCAP null fibroblasts, which suggests that CyCAP is involved in tTG post‐translational modification. Our data give novel evidence that CyCAP regulates the post‐translational modification of tTG through its colocalization with calnexin in ER. J. Cell. Physiol. 223: 151–157, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
A 28,000-Da GDP/GTP-binding protein specific to the nuclear envelope   总被引:4,自引:0,他引:4  
Using a photoaffinity labeling approach to characterize GDP/GTP-binding proteins of the nuclear envelope, we found that several polypeptides of isolated rat liver nuclear envelopes were photolabeled with [alpha-32P]GDP. One of these labeled proteins, which had an apparent molecular mass of 28 kDa (p28), was highly enriched in nuclear envelopes relative to unfractionated nuclei and was not detectable in fractions of mitochondria, cytosol, and endoplasmic reticulum membranes by two-dimensional gel electrophoresis. Thus p28 is specific to the nuclear envelope. Chemical extractions showed that p28 was tightly associated with a subfraction of the nuclear envelope enriched in nuclear pore complexes and lamina. Solubilization of p28 required buffers containing 1% octylglucoside and at least 300 mM KCl. Photolabeling of p28 was specific for GTP and GDP, since no other guanine or adenine nucleotide tested was able to compete efficiently with [alpha-32P]GDP for photolabeling. Added magnesium or manganese cations were not required for photolabeling of p28, and labeling was substantially inhibited with 10 mM MgCl2, 1 mM MnCl2, and KCl concentrations greater than 150 mM. Sucrose density centrifugation showed that detergent-solubilized p28 had a S value of 2.5. The properties of p28 described in this study suggest that it may have a role in functions of the pore complex or lamina.  相似文献   

18.
The primary intracellular site of localization of the estrogen receptor activation factor (E-RAF) is shown here to be the endoplasmic reticulum where the protein remains anchored through an estrogen dependent mechanism. The retention of E-RAF by the endoplasmic reticulum is facilitated by two proteins: (1) a 55 kDa anchor protein (ap55) which is an integral membrane protein of the endoplasmic reticulum. ap55 is a high affinity estrogen binding protein. A conformational change induced by estrogen binding is thought to favor the anchoring process. (2) The anchoring of E-RAF by ap55 is mediated by yet another protein. This is the 66 kDa transport protein (tp66) which recognizes ap55 on the one hand and E-RAF on the other. The presence of estradiol that saturates the hormone binding sites on ap55 appears to favor the anchoring of tp66-E-RAF complex to ap55. This interaction appears to be weakened by levels of estradiol below 7 nM concentration leading to the dissociation of the tp66-E-RAF complex from ap55. The tp66-E-RAF complex moves towards the nucleus.  相似文献   

19.
We have investigated the subcellular location and regulation of hepatic bilirubin UDP-glucuronyltransferase, which has been presumed to be located largely in the smooth endoplasmic reticulum. Purity of subcellular membrane fractions isolated from rat liver was assessed by electron microscopy and marker enzymes. Bilirubin UDP-glucuronyltransferase activity was measured by radiochemical assay using a physiologic concentration of [14C]bilirubin, and formation rates of bilirubin diglucuronide and monoglucuronides (C-8 and C-12 isomers) were determined. Activity of the enzyme was widely distributed in subcellular membranes, the majority being found in smooth and rough endoplasmic reticulum, with small amounts in nuclear envelope and Golgi membranes. No measurable activity was found in plasma membranes or in cytosol. Synthesis of bilirubin diglucuronide as a percentage of total conjugates and the ratio of C-8/C-12 bilirubin monoglucuronide isomers formed were comparable in all membranes, suggesting that the same enzyme is present in all locations. However, the regulation of bilirubin UDP-glucuronyltransferase activity differed among intracellular membranes; enzyme activity measured in the presence of the allosteric effector uridine 5'-diphospho-N-acetylglucosamine exhibited latency in smooth endoplasmic reticulum and Golgi membranes, but not in rough endoplasmic reticulum and nuclear envelope. Since rough membranes comprise 60% of hepatocyte endoplasmic reticulum and bilirubin UDP-glucuronyltransferase activity in vitro is maximal in this membrane fraction under presumed physiologic conditions, it is likely that the rough endoplasmic reticulum represents the major site of bilirubin glucuronidation in hepatocytes.  相似文献   

20.
In the hope of localizing thyroglobulin within focullar cells of the thyroid gland, antibodies raised against rat thyroglobulin were labeled with the enzyme horseradish peroxidase or with (125)I-radioiodine. Sections of rat thyroids fixed in glutaraldehyde and embedded in glycol methacrylate or Araldite were placed in contact with the labeled antibodies. The sites of antibody binding were detected by diaminobenzidine staining in the case of peroxidase labeling, and radioautography in the case of 125(I) labeling. Peroxidase labeling revealed that the antibodies were bound by the luminal colloid of the thyroid follicles and, within focullar cells, by colloid droplets, condensing vacuoles, and apical vesicles. (125)I labeling confirmed these findings, and revealed some binding of antibodies within Golgi saccules and rough endoplasmic reticulum. This method provides a visually less distinct distribution than peroxidase labeling, but it allowed ready quantitation of the reactions by counts of silver grains in the radioautographs. The counts revealed that the concentration of label was similar in the luminal colloid of different follicles, but that it varied within the compartments of follicular cells. A moderate concentration was detected in rough endoplasmic reticulum and Golgi saccules, whereas a high concentration was found in condensing vacuoles, apical vesicles, and in the luminal colloid. Varying amounts of label were observed over the different types of colloid droplets, and this was attributed to various degrees of lysosomal degradation of thyroglobulin. It is concluded that the concentration of thyroglobulin antigenicity increases during transport from the ribosomal site of synthesis to the follicular colloid, and then decreases during the digestion of colloid droplets which leads to the release of the thyoid hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号