首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances – 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 – were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000–2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.  相似文献   

2.
The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.  相似文献   

3.
The community composition and the factors affecting seasonal and interannual dynamics of zooplankton in Lake Bosumtwi were studied biweekly at a central index station during 2005 and 2006. The lake zooplankton community was species poor. Mesocyclops bosumtwii was numerically superior seasonally and interannually and was endemic to the lake. Minor constituents included Moina micrura, six rotifer species (except for Hexarthra intermedia) and Chaoborus ceratopogones larvae. Low variance of cyanobacteria-dominated phytoplankton biomass underlined stable zooplankton community structure. Emergence of rare species of rotifers occurred seasonally. The climatic signature on the lake’s stratification and mixing regime was strongly influenced by atmospheric temperature, but weakly by wind strength, because of sheltering of the lake by high crater walls. Increasing mixing depth entrained high TP concentrations from below the thermocline seasonally, but reflected poorly in the phytoplankton biomass behaviour. Total zooplankton abundance did not differ seasonally, but varied markedly from year to year in its timing and magnitude. Herbivores were squeezed between food limitation and high predation pressure from Chaoborus all year round. The low fish planktivory (high fishing pressure) on Chaoborus may create a trophic bottleneck restricting energy transfer efficiency from zooplankton to fish.  相似文献   

4.
Bacterioplankton abundance and production were followed during one decade (1991–2001) in the hypertrophic and steeply stratified small Lake Verevi (Estonia). The lake is generally dimictic. However, a partly meromictic status could be formed in specific meteorological conditions as occurred in springs of 2000 and 2001. The abundance of bacteria in Lake Verevi is highly variable (0.70 to 22 × 106 cells ml−1) and generally the highest in anoxic hypolimnetic water. In 2000–2001, the bacterial abundance in the hypolimnion increased probably due to meromixis. During a productive season, heterotrophic bacteria were able to consume about 10–40% of primary production in the epilimnion. Our study showed that bacterioplankton in the epilimnion was top-down controlled by predators, while in metalimnion bacteria were dependent on energy and carbon sources (bottom-up regulated). Below the thermocline hypolimnetic bacteria mineralized organic matter what led to the depletion of oxygen and created anoxic hypolimnion where rich mineral nutrient and sulphide concentrations coexisted with high bacterial numbers.  相似文献   

5.
The abundance of pelagic invertebrate predators in relation to turbidity and depth gradients in Lake Hiidenvesi (southern Finland) were studied. In the shallow (<5 m) and the most turbid (up to 75 NTU) part of the lake, the community of invertebrate predators consisted of cyclopoid copepods (max biomass >500 μg dw l−1) and Leptodora kindtiii (Focke) (17 μg dw l−1), while in the less turbid (10–40 NTU) stratifying area Chaoborus flavicans (Meigen) dominated (max 146 μg dw l−1). In the temporarily stratifying and moderately turbid basin Chaoborus and small-bodied invertebrate predators co-existed. Mysis relicta (Lovén) occurred only in the stratifying area (max 15 μg dw l−1). The results suggested that both water depth and turbidity contributed to the community structure of Chaoborus flavicans. Depth great enough for stratification was of special importance and its effect was amplified by elevated turbidity, while high turbidity alone could not maintain chaoborid populations. Mysis relicta also requires a hypolimnetic refuge but is more sensitive to low oxygen concentrations and may therefore be forced to the epilimnion where it is vulnerable to fish predation. Cyclopoids as rapid swimmers can take advantage at elevated turbidity levels and coexist in high biomass with fish even in shallow water. Leptodora kindtii can form high biomass despite planktivorous fish providing that turbidity exceeds 20 NTU. The results demonstrated that depth and water turbidity can strongly regulate the abundance and species composition of invertebrate predators. These factors must thus be taken into account when applying food web management, which aims to reduce phytoplankton biomass by depressing planktivorous fish.  相似文献   

6.
Primary Production of Phytoplankton in a Strongly Stratified Temperate Lake   总被引:7,自引:7,他引:0  
Lake Verevi (12.6 ha, maximum depth 11.0 m, mean depth 3.6 m) is a strongly eutrophic and stratified lake. Planktothrix agardhii is the most characteristic phytoplankton species in summer and autumn, while photosynthesizing sulphur bacteria can occur massively in the metalimnion. Primary production (PP) and chlorophyll a concentration (Chl a) were seasonally studied in 1991, 1993, 2000, and 2001. Vertical distribution of PP was rather complex, having usually two peaks, one at or near the surface (0–1 m), and another deeper (at 3–7 m) in the metalimnion. The values of dark fixation of CO2 in the metalimnion were in most cases higher than those in the upper water layer. Considering the average daily PP 896 mg C m−2 and yearly PP 162 mg C m−2, Secchi depth 2.34 m, and epilimnetic concentrations of chlorophyll a (19.6 mg m−3), total nitrogen and total phosphorus (TP, 52 mg m−3) in 2000, L. Verevi is a eutrophic lake of a ‘good’ status. Considering the total amounts of nutrients stored in the hypolimnion, the average potential concentrations in the whole water column could achieve 1885 mg m−3 of TN and 170 mg m−3 of TP reflecting hypertrophic conditions and a ‚bad’ status. Improvement of the epilimnetic water quality from the 1990s to the 2000s may have resulted from incomplete spring mixing and might not reflect the real improvement. A decreased nutrient concentration in the epilimnion has supported the establishment of a ‘clear epilimnion state’ allowing light to penetrate into the nutrient-rich metalimnion and sustaining a high production of cyanobacteria and phototrophic sulphur bacteria.  相似文献   

7.
Our observations indicate the vertical distribution of zooplankton and its seasonal changes in Dubník II reservoir (Slovakia) are determined mainly by the thermal regime of the reservoir, by transparency, and by fish and invertebrate predation. During periods of circulation, zooplankton vertical distribution in the whole water column was more homogeneous, whilst during summer temperature stratification zooplankton concentrated in the epilimnion — rotifers in higher layers than crustaceans. During summer stagnation a steep thermal gradient occurred at the boundary of the epi-and hypolimnion and low temperature and low dissolved oxygen in hypolimnion offered a refuge for Chaoborus flavicans larvae against fish, enabling coexistence of vertebrate and invertebrate predation. This evidence supports our previous findings concerning dominance of rotifers in zooplankton and representation of crustaceans by small-bodied species in the study reservoir. Steep thermal gradient and the presence of Chaoborus larvae caused very low zooplankton abundance in the lower part of the water column and a reduction of cladocerans refuges against fish to layers of thermocline or closely under thermocline where Daphnia cucullata and Daphnia parvula were found. Our previous assumptions about the high density of zooplanktivorous fish in Dubník II reservoir are supported by the fact that these small cladocerans are represented by smaller individuals in the upper layers and bigger individuals in deeper layers.  相似文献   

8.
1. Based on two mesocosm experiments and 10 in vitro predation experiments, this work aimed to evaluate the impact of nutrient supply and Chaoborus predation on the structure of the zooplankton community in a small reservoir in Côte d'Ivoire. 2. During the first mesocosm experiment (M1), P enrichment had no effect on phytoplankton biomass (chlorophyll a) but significantly increased the biomass of some herbivorous zooplankton species (Filinia sp, Ceriodaphnia affinis). During the second experiment (M2), N and P enrichment greatly increased phytoplankton biomass, rotifers and cladocerans (C. affinis, C. cornuta, Moina micrura and Diaphanosoma excisum). In both experiments, nutrient addition had a negative impact on cyclopoid copepods. 3. Larger zooplankton, such as cladocerans or copepodites and adults of Thermocyclops sp., were significantly reduced in enclosures with Chaoborus in both mesocosm experiments, whereas there was no significant reduction of rotifers and copepod nauplii. This selective predation by Chaoborus shaped the zooplankton community and modified its size structure. In addition, a significant Chaoborus effect on chlorophyll a was shown in both experiments. 4. The preference of Chaoborus for larger prey was confirmed in the predation experiments. Cladocerans D. excisum and M. micrura were the most selected prey. Rotifer abundance was not significantly reduced in any of the 10 experiments performed. 5. In conclusion, both bottom‐up and top‐down factors may exert a structuring control on the zooplankton community. Nutrients favoured more strictly herbivorous taxa and disadvantaged the cyclopoid copepods. Chaoborus predation had a strong direct negative impact on larger crustaceans, favoured small herbivores (rotifer, nauplii) and seemed to cascade down to phytoplankton.  相似文献   

9.
The distribution, abundance and standing crop biomass of chironomid larvae were determined at one-meter depth intervals along three radial transects. Samples were collected by coring soft sediments while diving. Three genera were found in the lake: Chironomus sp. (collector-filtering larvae), Ablabesmyia sp. (predatory larvae) and Goeldichironomus sp. (collector-filtering larvae). Standing crop densities of chironomids, averaged over the entire lake, varied from 30,594 larvae/m2 to 11,428 larvae/m2 at different depths. No statistically significant zonation in density was found for the two most common taxa, Chironomus sp. (87.8% of specimens) and Ablabesmyia sp. (9.0%), however the deepest zones (>4 m) had the lowest estimated densities. Significant differences in standing crop biomass were detected, with the 6 m depth having greatest biomass. The increase in standing crop biomass was a function of (1) lower frequency of first instars of Chironomus sp. and Ablabesmyia sp. at 6 m (2) higher average larval biomass of both species at 6 m and (3) very significant increase in average biomass of fourth instars of Chironomus sp. at 6 m compared to fourth instars at shallower depths. These results indicate that the lentic chironomids of this isolated oceanic habitat consist of a small number of species that are ecological generalists and tolerant of low oxygen concentrations.  相似文献   

10.
In Lake G»rdsjön (Southwest Sweden), liming as an experimental improvement of living conditions for pelagic algae, resulted in a significant increase of algal biomass and a reduction of mean cell size. The algal development was beneficial for small sized filter feeding zooplankton, particularly rotifers, which showed a significant increase. The increase in abundance of small sized zooplankton created better food conditions for the smaller instars, and thus a much better overall survival of Chaoborus larvae. The resulting, 6–7 times larger population of Chaoborus larvae significantly changed the structure of the crustacean zooplankton community. Bosmina coregoni, the fastest swimmer of the crustacean species suffered most and was strongly reduced by the increased predation from Chaoborus. The share of cladocerans decreased, while copepods increased in importance.  相似文献   

11.
The diurnal vertical migrations of smelt (Osmerus eperlanus), larvae of phantom midge (Chaoborus flavicans) and cladoceran zooplankton in eutrophic Lake Hiidenvesi were studied in order to clarify the factors behind the low zooplankton biomass. In the study area, an oxygen minimum occurred in the metalimnion in the 10–15 m depth. No diurnal fluctuations in the position of the minimum were observed. Cladocerans inhabited the epilimnion throughout the study period and their vertical movements were restricted to above the thermocline and above the oxygen minimum. C. flavicansconducted a diurnal migration. During the day, the majority of the population inhabited the 12 – 15 m depth just in the oxygen minimum, while during darkness they were found in the uppermost 8 m. Smelts started ascending towards the water surface before sunset and reached the uppermost 3 m around 23:00. During daytime, the majority of smelts inhabited the depth of 7–9 m, where the water temperature was unfavourably high for them (18 °C). Smelts thus probably avoided the steep oxygen gradient in the metalimnion, whereas Chaoborusused the oxygen minimum as a refuge against predation. Those smelts that were found in the same water layers as Chaoborusused the larvae as their main prey. The metalimnetic oxygen minimum thus seemed to favour the coexistence of vertebrate and invertebrate predators, leading to a depression of cladoceran zooplankton.  相似文献   

12.
Hydroacoustical surveys in the Piaseczno reservoir were performed in May and September 2002 using a Biosonics 101 dual beam echo sounder. They have revealed very scarce fish populations in pelagic waters with twice-higher abundance in autumn (530 fish ha−1) as compared with spring (280 fish ha−1). Small and very small fish (below 10 cm length) dominated. Apart from fish, Chaoborus larvae were producing acoustical echoes of the TS similar or slightly weaker than that of small fish. Invertebrates formed a thin layer, less than 2 m thick at the border of an anoxic zone, and were changing their depth position between 6 and 16 m, both diurnally and seasonally.  相似文献   

13.
Nitrogen Dynamics in the Steeply Stratified,Temperate Lake Verevi,Estonia   总被引:2,自引:0,他引:2  
The dynamics of different nitrogen compounds and nitrification in diverse habitats of a stratified Lake Verevi (Estonia) was investigated in 2000–2001. Also planktonic N2-fixation (N2fix) was measured in August of the observed years. The nitrogen that accumulated in the hypolimnion was trapped in the non-mixed layer during most of the vegetation period causing a concentration of an order of magnitude higher than in the epilimnion. The ammonium level remained low in the epilimnion (maximum 577 mgN m−3, average 115 mgN m−3) in spite of high concentrations in the hypolimnion (maximum 12223 mgN m−3, average 4807 mgN m−3). The concentrations of NO2 and NO3 remained on a low level both in the epilimnion (average 0.94 and 9.09 mgN m−3, respectively) and hypolimnion (average 0.47 and 5.05 mgN m−3, respectively). N2fix and nitrification ranged from 0.30 to 2.80 mgN m−3 day−1 and 6.0 to 107 mgN m−3 day−1, respectively; the most intensive processes occurred in 07.08.00 at depths of 2 and 5 m, accordingly. The role of N2fix in the total nitrogen budget of Lake Verevi (in August 2000 and 2001) was negligible while episodically in the nitrogen-depleted epilimnion the N2fix could substantially contribute to the pool of mineral nitrogen. Nitrification was unable to influence nitrogen dynamics in the epilimnion while some temporary coupling with ammonium dynamics in the hypolimnion was documented.  相似文献   

14.
The large but shallow (3,558 km2, up to 15.3 m deep) lake is eutrophic, with Chironomus plumosus and Potamothrix hammoniensis as dominating macroinvertebrates in the profundal. The extensive well-aerated sublittoral with sandy bottom sediments has a mesotrophic appearance and supports a diverse fauna with several oxyphilous species, including a very abundant population of Dreissena polymorpha. The phytophilous fauna is limited to small sheltered areas only. The average abundance of the small animals of macrozoobenthos (without big molluscs) was 2,617 ind. m–2, their biomass 12.34 g m–2 (corresponding to 52.2 kJ m–2) in 1964–1994. The same figures for big molluscs (mostly Dreissena) were 304 ind. m–2 and 238 g m–2 in 1964–1994, and even 864 ind. m–2 and 687 g m–2 in 1985–1988, at the time of their special mapping. The sublittoral zone revealed the lowest biomass of small animals but the highest biomass of big molluscs. The southern, shallower lake regions, more enriched with nutrients and better protected from wind, revealed a significantly higher biomass of small macrozoobenthos in the near-shore zone than the cleaner and open northern part, while no positive effect of enrichment was observed neither in the biomass of profundal zoobenthos nor in that of big molluscs. The production of the small macrozoobenthos was calculated as 111 and 53 kJ m–2 during two annual cycles in Lake Peipsi s. s., the most productive period being the autumn overturn. Lake Peipsi-Pihkva has the highest abundance and biomass of macrozoobenthos among the large lakes of North Europe.  相似文献   

15.
We analyzed the effects of planktivorous Holeshestes heterodon Eigenmann (Characidae) predation on the plankton community of a small subtropical reservoir, using four enclosures (volume about 17.5 m3), open to the sediment, established in the littoral zone. Two enclosures were stocked with fish (mean TL 5.7 cm), at a density of about 4–5 fish m–3 (approx. 8 g m–3), whereas two remained fishless. The experiment lasted a little longer than one month. In the fish enclosures, most Crustacea and Chaoborus larvae remained scarce, probably as a result of visually selective fish predation. In both fishless enclosures, Chaoborus larvae became abundant. However, in only one of these did large individuals become relatively numerous; this discrepancy in the demographic structure of the Chaoborus populations between the two fishless enclosures is unexplained. Only in the fishless enclosure without appreciable numbers of large Chaoborus did densities of Crustacea increase greatly. It is suggested that in the enclosure containing large Chaoborus individuals, crustacean populations were prevented from developing due to predation pressure, while the small Chaoborus larvae of the other enclosure could not readily consume these prey. Rotifers were low in abundance in the absence of fish, probably as a consequence of Chaoborus predation. Phytoplankton density increased in all four enclosures, due probably to the lack of water flow. Only in the fishless enclosure with high densities of crustaceans did phytoplankton abundance decrease markedly at the end of the experiment, perhaps because of grazing losses.  相似文献   

16.
1. Previous studies have suggested that the occurrence of larval Chaoborus in lakes may be affected by fish predation, pH, elevation, temperature, nutrient level, water transparency and interspecific competition, but so far, a detailed statistical evaluation of these findings has not been performed. 2. The aim of this study was to apply regression and ordination techniques to a large data set of 56 lakes in order to test which variables related to lake morphology, water chemistry, and fish predation determine (1) the abundance of individual Chaoborus species and (2) their species composition. 3. Individual Chaoborus species were influenced by very different sets of environmental factors. Nutrient levels positively affected the largest species, Chaoborus americanus, which was restricted to fishless lakes. Abundance of the smallest and most transparent species, C. punctipennis, seemed to be controlled more by the larger Chaoborus species than by fish. Larger chaoborids required low water clarity in order to co‐exist with fish, probably to increase refuge availability. Generally, small lakes (for C. flavicans/C. trivittatus) and shallow lakes (for C. punctipennis) supported higher abundances of Chaoborus.  相似文献   

17.
Fauvet  Guillaume  Claret  Cécile  Marmonier  Pierre 《Hydrobiologia》2001,464(1-3):121-131
An enclosure study was conducted in Ranger Lake in south-central Ontario, Canada from 4 July to 5 August 1997 to determine predation effects of the larvae of the phantom midge fly Chaoboruson the zooplankton community. Zooplankton assemblages were established in 12 enclosures (2 m in diameter, 7.5 m deep). Three densities of fourth-instar Chaoborus trivittatus (0 l–1, 0.1 l–1 and 0.5 l–1) were introduced as predator treatments to the enclosures. Temperature, dissolved oxygen and zooplankton community composition were monitored for six weeks. To determine if the zooplankton community composition changed, a repeated measures multivariate analysis was performed on percent biomass of Bosmina and calanoid copepods. There were no significant differences in mean taxon percent biomass among predator treatments. There were significant differences in mean taxon percent biomass between water layers (epilimnion and metalimnion). There were also significant differences in lengths of Bosmina and calanoid copepods among predator treatments at the end of the experiment. Crop content analysis of C. trivittatusshowed that Bosmina constituted 88–98% of the prey items found in the crops. These results demonstrate that the use of deep enclosures, a Chaoborus species which vertically migrates, and lower natural densities of Chaoborus may provide prey with an important natural refuge from predation and so allow a more accurate determination of the predation impact of Chaoborus trivittatusin temperate lakes where fish control Chaoborus densities.  相似文献   

18.
Population dynamics, demography and body size of the cladoceranBosmina longirostris were examined in an experimental study in which the abundance of its predator (the cyprind fishPhoxinus eos) was varied in an unproductive lake. Four densities of fish were used, encompassing the biomass of fish in the lake.Bosmina was most abundant at low and medium fish densities (1.06 and 2.12 g fish biomass · m-3) and less abundant when fish were either absent or present at high density (3.71 g fish biomass · m-3). The unimodal response to predator abundance resulted from effects on both birth and death rates.Bosmina birth rates increased as fish biomass increased, in response to increasing food (phytoplankton) biomass. Death rates were highest at high fish biomass (because of fish predation) and in the absence of fish (because of predation by the dipteranChaoborus, which was most abundant in the absence of fish). Size-frequency distributions revealed that fish eliminated the larger size classes ofBosmina, and mean carapace length ofBosmina populations was inversely proportional to fish biomass.Bosmina initiated reproduction at smaller size in the presence of fish than in their absence, and size at maturity was inversely proportional to fish biomass. Size at birth also tended to decrease with increasing fish biomass, but this trend was not as strong as that of size at maturity. Decreased size at maturity apparently allowedBosmina individuals to reproduce before becoming vulnerable to fish predation. Flexibility in size at maturity, together with low abundance of invertebrate predators and large herbivores (which were preyed upon by fish), allowedBosmina to become abundant in low and medium fish treatments. In the high fish treatment, mortality due to fish predation was too severe to be offset by decreased size at maturity, andBosmina population density was low. The net response ofBosmina populations to fish predation results from interactive effects of predation on mortality, natality, and life history traits.  相似文献   

19.
Summary A SCUBA-diving survey of the macrobenthos of hard substrata in the sublittoral zone at subantarctic Marion Island was conducted during March and April 1988. Dense beds (12 kg m–2) of the kelp Macrocystis laevis occur in depths > 5 m. Durvillaea antarctica is found along the infralittoral fringe and Desmarestia rossi and Durvillaea sp. occur in a narrow zone from 3 m–6 m. Under-storey algae (chiefly rhodophytes) tend to decrease in biomass with depth, with mean values of 1.57 kg m–2 at 5m, 0.75 kg m–2 at 10m and 0.49 kg m–2 at 15 m. Encrusting coralline algae are particularly abundant in shallow areas (¯x = 0.92 kg m–2) but are insignificant in deeper areas. Total biomass of macrozoobenthos increased with depth with mean values of 0.12 kg m–2 at 5 m, 0.34 kg m–2 at 10 m and 0.46 kg m–2 at 15 m. Polychaetes, crustaceans, echinoderms, molluscs, sponges and bryozoans dominated the macrozoobenthos in terms of biomass. Approximately 200 species of macrobenthic animals were recorded and numerically, polychaetes, crustaceans, molluscs, nematodes and echinoderms dominated. The sublittoral benthos at Marion Island is compared with that occurring at other subantarctic and Antarctic islands, in particular, the Kerguelen Island group. Zoogeographic trends and the possible effects of nutrient input from seabird guano are briefly discussed.  相似文献   

20.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号