首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bov-B LINE retrotransposon was first discovered in Ruminantia and was long considered to be specific for this order. Later, this mobile element was described in snakes and some lizard species. Analysis of phylogenetic relationships of Bov-B LINE elements from different ruminants, snakes, and lizard species led to the suggestion on horizontal transfer of this retrotransposon from Squamata to Ruminantia. In the Squamata group, Bov-B LINE element was found in all snakes and some lizard species examined. The element was not detected in the genomes of some species of the genera Lacerta and Podarcis. In the present study, using PCR amplification and sequencing of PCR products, Bov-B LINE element was identified in the genomes of parthenogenetic and bisexual species of the genus Darevskia (Lacertidae), as well as in such species as Lacerta agilis and Zootoca vivipara, where this retrotransposon had not been not detected before.  相似文献   

2.
Kordis D  Gubensek F 《Gene》1999,238(1):171-178
Since their discovery in family Bovidae (bovids), Bov-B LINEs, believed to be order-specific SINEs, have been found in all ruminants and recently also in Viperidae snakes. The distribution and the evolutionary relationships of Bov-B LINEs provide an indication of their origin and evolutionary dynamics in different species. The evolutionary origin of Bov-B LINE elements has been shown unequivocally to be in Squamata (squamates). The horizontal transfer of Bov-B LINE elements in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The direction of horizontal transfer from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution of Bov-B LINE elements. The ancestor of Colubroidea snakes has been recognized as a possible donor of Bov-B LINE elements to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINE elements in Ruminantia and the fossil data of Ruminantia to be 40-50 My ago. The phylogenetic relationships of Bov-B LINE elements from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINE elements have been stably maintained by vertical transmission since the origin of Squamata in the Mesozoic era.  相似文献   

3.
Kordis D  Gubensek F 《Genetica》1999,107(1-3):121-128
Since their discovery in family Bovidae (bovids), Bov-B LINEs, believed to be order-specific SINEs, have been found in all ruminants and recently also in Viperidae snakes. The distribution and the evolutionary relationships of Bov-B LINEs provide an indication of their origin and evolutionary dynamics in different species. The evolutionary origin of Bov-B LINE elements has been shown unequivocally to be in Squamata (squamates). The horizontal transfer of Bov-B LINE elements in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The direction of horizontal transfer from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution of Bov-B LINE elements. The ancestral snake lineage (Boidae) has been recognized as a possible donor of Bov-B LINE elements to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINE elements in Ruminantia and the fossil data of Ruminantia to be 40–50mya. The phylogenetic relationships of Bov-B LINE elements from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINE elements have been stably maintained by vertical transmission since the origin of Squamata in the Mesozoic era. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
6.
Two new short retroposon families (SINEs) have been found in the genome of springhare Pedetes capensis (Rodentia). One of them, Ped-1, originated from 5S rRNA, while the other one, Ped-2, originated from tRNA-derived SINE ID. In contrast to most currently active mammalian SINEs mobilized by L1 long retrotransposon (LINE), Ped-1 and Ped-2 are mobilized by Bov-B, a LINE family of the widely distributed RTE clade. The 3' part of these SINEs originates from two sequences in the 5' and 3' regions of Bov-B. Such bipartite structure of the LINE-derived part has been revealed in all Bov-B-mobilized SINEs known to date (AfroSINE, Bov-tA, Mar-1, and Ped-1/2), which distinguishes them from other SINEs with only a 3' LINE-derived part. Structural analysis and the distribution of Bov-B LINEs and partner SINEs supports the horizontal transfer of Bov-B, while the SINEs emerged independently in lineages with this LINE.  相似文献   

7.
A mitogenomic study on the phylogenetic position of snakes   总被引:2,自引:0,他引:2  
Phylogenetic relationships of squamates (lizards, amphisbaenians and snakes) have received considerable attention, although no consensus has been reached concerning some basal divergences. This paper focuses on the Serpentes (snakes), whose phylogenetic position within the Squamata remains uncertain despite a number of morphological and molecular studies. Some mitogenomic studies have suggested a sister-group relationship between snakes and varanid lizards, while other studies have identified snakes and lizards as sister groups. However, recent studies using nuclear data have presented a different scenario, with snakes being more closely related to anguimorph and iguanian lizards. In this mitogenomic study we have examined the above hypotheses with the inclusion of amphisbaenians, one gekkotan and one acrodont lizard, taxa not represented in previous mitogenomic studies. To this end we have also extended the representation of snakes by sequencing five additional snake genomes: two scolecophidians ( Ramphotyphlops australis and Typhlops mirus ) two henophidians ( Eunectes notaeus and Boa constrictor ) and one caenophidian ( Elaphe guttata ). The phylogenetic analysis recovered snakes and amphisbaenians as sister groups, thereby differing from previous hypotheses. In addition to a discussion on previous morphological and molecular studies in light of the results presented here, the current study also provides some details regarding features of the new snake mitochondrial genomes described.  相似文献   

8.
《Gene》1998,211(2):387-394
A novel protein, BCNT, originally isolated from bovine brain and named after Bucentaur, contains an internal portion that is translated from part of bovine LINE repetitive sequence (Bov-B LINE). Human cDNA highly homologous to the bovine bcnt (bbcnt) cDNA has been isolated but does not contain a sequence similar to the Bov-B LINE insert (Nobukuni, T., Kobayashi, M., Omori, A., Ichinose, S., Iwanaga, T., Takahashi, I., Hashimoto, K., Hattori, S., Kaibuchi, K., Miyata, Y., Masui, T., Iwashita, S., 1997. An Alu-linked repetitive sequence corresponding to 280 amino acids is expressed in a novel bovine protein, but not in its human homologue. J. Biol. Chem. 272, 2801–2807). In this study, we conducted a polymerase chain reaction analysis to investigate whether such a Bov-B LINE insert is present in bcnt orthologs in other animals and in the genomic sequence of the human BCNT (hBCNT) gene. The results indicate that the Bov-B LINE insert is present in the genomic sequences of bcnt orthologs from sheep, goats, axis deer, and mouse deer (chevrotin), that is in Ruminantia, but not in pigs or human. Analysis of the bbcnt genomic sequence around the Bov-B LINE insert revealed a large part of the inserted Bov-B LINE sequence to be included in an exon; this is followed by a 54-nucleotide sequence that is highly homologous to Bov-B LINE in the 3′-side intron. The hBCNT gene was isolated and found to consist of seven exons and six introns, among which the intron corresponding to the Bov-B LINE insertion site in the bbcnt genome is 16.5 kb in length with no sequence similar to Bov-B LINE. Based on these results, it seems likely that the Bov-B LINE insert is derived from a long Bov-B LINE repetitive sequence transposed to an ancestral bcnt gene in Ruminantia and reformed as a new exon through new splicing sites in the transposed sequence.  相似文献   

9.
The restriction site distribution in satellite DNA of 17 Caucasian rock lizard species of the genus Lacerta (Darevskia gen. nov.), (Squamata, Lacertidae) was analyzed. The distribution patterns were shown to reflect the degree of satellite DNA evolutionary divergence, which could be revealed by taxonprint method, i.e., through the analysis of genomic DNA with a set of restriction endonucleases and subsequent computer-aided treatment. Thus, the taxonprint method offers an opportunity to examine the satellite DNA divergence in closely related species and infer their phylogeny of the species studied without reserting to costly and labor-consuming procedures. This is the advantage of using this technique at the early stages of genomic DNA phylogenetic analysis for rapid and effective estimation of relationships between closely related species as well as in the cases when DNA cloning and sequencing are too expensive or not feasible.  相似文献   

10.
The (non-LTR) LINE and Ty3-gypsy-type LTR retrotransposon populations of three Vicia species that differ in genome size (Vicia faba, Vicia melanops and Vicia sativa) have been characterised. In each species the LINE retrotransposons comprise a complex, very heterogeneous set of sequences, while the Ty3-gypsy elements are much more homogeneous. Copy numbers of all three retrotransposon groups (Ty1-copia, Ty3-gypsy and LINE) in these species have been estimated by random genomic sequencing and Southern hybridisation analysis. The Ty3-gypsy elements are extremely numerous in all species, accounting for 18–35% of their genomes. The Ty1-copia group elements are somewhat less abundant and LINE elements are present in still lower amounts. Collectively, 20–45% of the genomes of these three Vicia species are comprised of retrotransposons. These data show that the three retrotransposon groups have proliferated to different extents in members of the Vicia genus and high proliferation has been associated with homogenisation of the retrotransposon population.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

11.
12.
Xu Z  Ramakrishna W 《Gene》2008,412(1-2):50-58
Retrotransposons are abundant in higher plant genomes. Although retrotransposons associated with plant genes have been identified, little is known about their evolutionary conservation at the level of species and subspecies. In the present study, we investigated the phylogenetic distribution of long terminal repeat (LTR) retrotransposon, long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) insertions in six genes in 95 cultivated and wild rice genotypes. These six genes are likely to be functional based on nonsynonymous (Ka) to synonymous (Ks) substitution ratios which were found to be significantly <1. Different conservation patterns of these retrotransposons in genes were observed in cultivated and wild rice species. Four out of seven retrotransposon insertions appear to predate the ancestral Oryza AA genome. Two of these insertions in genes 4 and 5 occurred early in the evolutionary history of Oryza. Two retrotransposon insertions in gene 1 arose after the divergence of Asian cultivated rice from its wild ancestor. Furthermore, the retrotransposon insertion in gene 3 appears to have occurred in the ancestral lineage leading to temperate japonicas. Conservation of retrotransposon insertions in genes in specific groups, species, and lineages might be related to their specific function.  相似文献   

13.
A first report on structural organization of ribosomal DNA arrays in some members of the order Squamata is presented. The data obtained point to unusually small (for vertebrates) size of the rDNA repetitive unit (approximately, 10 to 15 kb) in the lizard species examined. Analysis of BAC library of Uta stansburiana (Iguania) showed that haploid genome of this lizard contained a single cluster, consisting of about ten rDNA repeats. Determination of the extent of rDNA unit repetition in some other representatives of the order Squamata, using the method of comparative real-time PCR, showed that the number of rDNA units varied from one or several dozens in Iguanina to several hundred repeats in Scincomorpha and Varonoidea. The results are discussed in terms of an ambiguous position of the infraorder Iguania on the evolutionary trees constructed based on morphological and molecular data.  相似文献   

14.
SINE retrotransposition events have proven their value as phylogenetic markers in several eukaryotic taxa at different taxonomic levels. The genomes of ruminants contain three related SINE elements, Bov-tA, Bov-A2, and Bov-B. To estimate the time points of retrotransposition of individual copies of these SINEs, we designed PCR primers on database sequences containing SINE insertions in cattle, sheep, or goat genomes and tested for the presence of these copies in the genomes of other ruminants. It was checked by sequencing whether length variation of the PCR products reflected a SINE retrotransposition. One Bov-B and nine Bov-tA insertions were shared by cattle, sheep, goat, and giraffe, indicating an early retrotransposition event before the radiation of the Pecora, while three other Bov-tA and two Bov-B elements were apparently inserted later. The ruminant α-lactalbumine gene contains a hotspot of early and more recent Bov-tA insertions, a Bov-tA replacement as well as a recent Bov-B insertion. Three Bov-A2 insertions were found to be shared only by the Bovidae, the Bovini, and the Bos and Bison species, respectively, indicating that most Bov-A2 insertions are relatively recent. The time elapsed since the retrotransposition was also reflected in the degeneration of the direct repeats that flank SINE inserts. We suggest that retrotransposition of SINEs may serve as phylogenetic markers in the ruminant families, subfamilies, and even tribes. In addition, sequencing of SINE insertions revealed several other unique deletions/insertions that also may be informative for phylogenetic reconstructions of ruminants. Received: 19 January 2001 / Accepted: 6 June 2001  相似文献   

15.
Complete or nearly complete mitochondrial DNA sequences were determined from four lizards (Western fence lizard, Warren's spinytail lizard, Terrestrial arboreal alligator lizard, and Chinese crocodile lizard) and a snake (Texas blind snake). These genomes had a typical gene organization found in those of most mammals and fishes, except for a translocation of the glutamine tRNA gene in the blind snake and a tandem duplication of the threonine and proline tRNA genes in the spinytail lizard. Although previous work showed the existence of duplicate control regions in mitochondrial DNAs of several snakes, the blind snake did not have this characteristic. Phylogenetic analyses based on different tree-building methods consistently supported that the blind snake and a colubrid snake (akamata) make a sister clade relative to all the lizard taxa from six different families. An alternative hypothesis that snakes evolved from a lineage of varanoids was not favored and nearly statistically rejected by the Kishino-Hasegawa test. It is therefore likely that the apparent similarity of the tongue structure between snakes and varanoids independently evolved and that the duplication of the control region occurred on a snake lineage after divergence of the blind snake.  相似文献   

16.
17.
18.
Thyroid hormones (THs) play crucial roles in various developmental and physiological processes in vertebrates, including squamate reptiles. The effect of THs on shedding frequency is interesting in Squamata, since the effects on lizards are quite the reverse of those in snakes: injection of thyroxine increases shedding frequency in lizards, but decreases it in snakes. However, the mechanism underlying this differential effect remains unclear. To facilitate the investigation of the molecular mechanism of the physiological functions of THs in Squamata, their two specific receptor (TRalpha and beta) cDNAs, which are members of the nuclear hormone receptor superfamily, were cloned from a lizard, the leopard gecko, Eublepharis macularius. This is the first molecular cloning of thyroid hormone receptors (TRs) from reptiles. The deduced amino acid sequences showed high identity with those of other species, especially in the C and E/F domains, which are characteristic domains in nuclear hormone receptors. Expression analysis revealed that TRs were widely expressed in many tissues and organs, as in other animals. To analyze their role in the skin, temporal expression analysis was performed by RT-PCR, revealing that the two TRs had opposing expression patterns: TRalpha was expressed more strongly after than before skin shedding, whereas TRbeta was expressed more strongly before than after skin shedding. This provides good evidence that THs play important roles in the skin, and that the roles of their two receptor isoforms are distinct from each other.  相似文献   

19.
20.
Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号