首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although growth hormone (GH) exerts various direct and indirect stimulatory effects on gonadal development and function, excessive levels of GH in acromegalic patients and in transgenic animals are often associated with reproductive disorders. We have examined reproductive performance of transgenic female mice expressing the following hybrid genes: mouse metallothionein-1 (MT)/human placental GH variant (hGH.V), MT/bovine GH(bGH), and phosphoenolpyruvate carboxykinase (PEPCK)/bGH. This allowed us to evaluate the effects of chronic GH excess in three animal models and to obtain some information on the significance of the lactogenic activity of the foreign GH (hGH.V vs. bGH) and on the developmental stage of transgene expression (MT vs. PEPCK). Transgenic animals from each line had elevated plasma insulin-like growth factor-I levels and greatly increased adult body weight. Plasma bGH levels were significantly higher in PEPCK/bGH than in MT/bGH transgenic mice. Approximately 20% of transgenic MT/hGH.V and MT/bGH females and over 60% of transgenic PEPCK/bGH females were infertile. Transgenic females that did reproduce ovulated either a normal or increased number of eggs but exhibited a variety of reproductive disorders including increased interval between pairing with a male and conception, increased interval between litters, reduced number of litters, reduced fetal growth, increased pre- and postnatal mortality, and alterations in sex ratio. Among adult offspring of these females, the proportion of transgenic animals was significantly less than the expected 50%. While some characteristics (e.g., fetal crown-rump length and weight on Day 14 of pregnancy) were affected to a comparable extent in transgenic females from all three lines, MT/hGH.V and PEPCK/bGH females were, in general, more severely affected than the MT/bGH animals. Sterility of PEPCK/bGH females appeared to be due to luteal failure since treatment with progesterone led to pregnancy. Greatly increased intervals between successive litters appeared to be due to failure to mate during postpartum estrus and to sterile matings during this period. Reduced fetal size and weight may have been due to chronic glucocorticoid excess because comparable changes could be induced in normal females by injections of dexamethasone during pregnancy, and plasma corticosterone levels were previously shown to be elevated in transgenic mice from each of these lines. Comparison of these results with data obtained from matings of normal female mice to transgenic males from the same lines suggests that reduced fetal growth is due primarily to maternal genotype, while reduced "transmission" of the hybrid genes is not, and presumably reflects increased mortality of transgenic progeny at various stages of development.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
生长激素和生长激素受体的多样性   总被引:8,自引:0,他引:8  
李虹 《生物学杂志》2002,18(4):10-11,3
生长激素及其受体对动物生长发育起着重要的作用。转录过程选择性剪接和存在多种降解途径可能是GH或GHR产生多样性的原因。随着GH结构形态的改变,其功能也在发生变化。GH基因的多样性对鸡的抗病选择性反应与产蛋性能有相关,GH和GHR基因的多样性会影响奶牛的产奶生产性能。GHR的分子多样性可能导致动物生长发育模式的变异,例如动物的矮小病。  相似文献   

3.
The somatotropic and lactotropic receptors were studied in liver microsomal preparations from transgenic mice carrying the human growth hormone (hGH) or bovine growth hormone (bGH) gene fused to mouse metallothionein-I (MT) or phosphoenolpyruvate carboxykinase promoter/regulator (PEPCK). Specificity studies indicated that, similarly to normal mice, liver microsomes from the transgenic animals possess a mixed population of somatotropic and lactotropic binding sites. In transgenic animals of both sexes, the binding capacity of somatotropic receptors was significantly increased without corresponding changes in affinity. Expression of the MT-hGH hybrid gene was associated with the induction of somatotropic receptors which was approximately twice as great as that measured in animals expressing the MT-bGH hybrid gene. The binding capacity of lactotropic receptors in liver microsomes (quantitated, by the use, of labelled ovine prolactin) was increased 2–3 fold in transgenic females and approximately 10-fold in transgenic males as compared to the respective normal controls. We conclude that lifelong excess of GH up-regulates hepatic GH and prolactin receptors, and that lactogenic activity of GH is not essential for induction of prolactin receptors in the liver of transgenic mice.  相似文献   

4.
The presence of growth hormone (GH) and GH receptors (GHRs) in the lung suggests it is an autocrine/paracrine target site for pulmonary GH action and/or an endocrine site of pituitary GH action. Roles for GH in lung growth or pulmonary function are, however, uncertain. The possibility that pituitary and/or pulmonary GH have physiological roles in lung development has therefore been investigated in GHR knockout (KO or -/-) mice, using a proteomics approach to determine if an absence of GH-signaling affects the proteome of the developing lung. More than 600 proteins were detected by 2-DE in the lungs of control [GHR (+/+)] and GHR (-/-) mice at the end of the alveolarization period (at day 14 postnatally). Of these, 39 differed significantly in protein content at the p>0.05 level [6 were of higher abundance in the GHR (-/-) group, 33 were of lower abundance] and 17 differed at the p>0.02 level [5 of higher abundance in the GHR (-/-) group, 12 of lower abundance] and 7 were definitively identified by MS. Vimentin, a protein involved in cellular proliferation, was reduced in content by approximately 75% in the lungs of the GHR (-/-) mice. Three proteins involved in oxidative protection [SH3 domain-binding glutamic acid-rich-like protein, peroxiredoxin 6 (Prdx6), and isocitrate dehydrogenase 1] were also of lower content in the GHR (-/-) lungs (by approximately 88%, 81% and 70%, respectively). Prdx6 is also involved in lipid and surfactant metabolism, as is apolipoprotein A-IV, the lung content of which was reduced by approximately 73% in these mice. Proteasome 26S ATPase subunit 4, a protein involved in the non-lysosomal degradation of intracellular proteins, and electron flavoprotein alpha subunit , involved in intracellular metabolism, were also reduced in content in the lungs of the GHR (-/-) mice (by approximately 70% and 49%, respectively). These results therefore suggest that these proteins are normally dependent upon GH signaling, and that GH is normally involved in early lung growth, oxidative protection, lipid and energy metabolism and in proteasomal activity. These roles may reflect endocrine actions of pituitary GH and/or local autocrine/paracrine actions of GH produced within the lung.  相似文献   

5.
Previous work from our laboratory provided evidence for increased plasma corticosterone levels in mice transgenic for human and bovine growth hormone (GH). Corticosterone was elevated in both sexes, under both basal and ether-induced stress conditions. The objectives of the present study were to investigate thein vitro adrenal sensitivity to ACTH, GH and/or IGF-I in normal and bGH transgenic mice, to examine plasma corticosterone levels at different times of the day, and to determine plasma levels of ACTH in these animals. For the measurement of plasma corticosterone and ACTH levels, transgenic and normal siblings were housed 2 per cage and decapitated simultaneously within 20 seconds of the first disturbance of the cage. The corticosterone production byin vitro adrenal incubations did not differ between adrenals from normal and transgenic mice at the basal level or in the presence of different doses of ACTH. Growth hormone or IGF-I did not have any effect on corticosterone productionin vitro when given alone, and did not modify the effects of ACTH on the accumulation of corticosterone in the media. Plasma corticosterone concentrations were higher in transgenic than in normal animals in both morning and evening. Plasma concentrations of ACTH in animals killed in the morning were sharply increased in transgenic males as compared with their normal siblings. The results indicate that increased circulating levels of corticosterone in transgenic mice are not due to a potentiation of ACTH actions by GH or IGF-I, but rather to a chronic increase in plasma ACTH levels. The increase in ACTH is presumably a reflection of GH actions in the hypothalamic-pituitary system.  相似文献   

6.
GH binding protein (GHBP) is a circulating form of the GH receptor (GHR) extracellular domain, which derives by alternative splicing of the GHR gene (in mice and rats) and by metalloprotease-mediated GHR proteolysis with shedding of the extracellular domain as GHBP (in rabbits, humans, and other species). Inducible proteolysis of either mouse (m) or rabbit (rb) GHR is detected in cell culture in response to phorbol ester and other stimuli, yielding a cell-associated GHR remnant (comprised of the cytoplasmic and transmembrane domains and a small portion of the proximal extracellular domain) and down-regulating GH signaling. In this report, we map the mGHR cleavage site by adenoviral overexpression of a membrane-anchored mGHR mutant lacking its cytoplasmic domain and purification and N-terminal sequencing of the phorbol 12-myristate 13-acetate-induced remnant protein. The sequence obtained was LEACEEDI, which matches the mGHR extracellular domain stem region sequence L265EACEEDI272, indicating that mGHR cleavage occurs in the extracellular domain nine residues outside of the transmembrane domain, in the same region (but at different residues) as the rbGHR cleavage site we recently mapped. We studied the effects on receptor proteolysis and GHBP shedding of replacing rbGHR cleavage site residues with those corresponding to the mGHR cleavage site. We analyzed five separate rodentized rbGHR mutants incorporating mGHR amino acids either at or surrounding the cleavage site. Each mutant was normally processed, displayed at the cell surface, and responded to GH stimulation by undergoing tyrosine phosphorylation. Only the mutants replaced with mGHR cleavage site residues, rather than surrounding residues, exhibited deficient inducible proteolysis and GHBP shedding. These findings suggested that the GHR cleavage sites in the two species differ in their susceptibility to cleavage. This difference may underlie interspecies variation in utilization of proteolysis to generate GHBP.  相似文献   

7.
Elevation in circulating GH levels results in a dose-related increase in serum insulin-like growth factor-1 (IGF-1) levels in dogs. However, it is not known whether elevations in systemic IGF-1 and GH levels contribute to the cerebrospinal fluid (CSF) levels of these hormones. Therefore, a study was designed in dogs to determine if elevated circulating GH levels was a result of a GH secretagogue (MK-0677) or if exogenous GH administration resulted in increased IGF-1 and GH levels in the CSF of dogs. A total of 12 normal, young adult male dogs were randomized to three treatment groups (4 dogs/group) based on body weight. There were 4 vehicle control dogs. A group of 4 dogs were dosed orally with MK-0677 (5 mg/kg/day) dissolved in deionized water. A third group of 4 dogs received subcutaneous injections of porcine GH (pGH) at a dose of 0.1 IU/kg/day. From all dogs, blood and CSF samples were collected prior to the initiation of treatment and on days 7 and 15 of treatment. All samples were assayed using a validated radioimmunoassay. Administration of MK-0677 or pGH resulted in a statistically significant (P < or = 0.05) increased body weight gain and increased serum IGF-1 and GH levels. In contrast, administration of MK-0677 resulted in no significant (P > 0.05) increase in CSF IGF-1 or GH levels on days 7 or 15 of the study. The CSF IGF-1 values ranged from 1.2 to 2.0 ng/ml with minimal variation among three separate samples taken during the course of the study from each dog. Similarly, the CSF GH levels were very low (< 0.98 ng/ml to 2.4 ng/ml) in all dogs irrespective of treatment group. This study has demonstrated that there is no correlation between the circulating levels of IGF-1 or GH and the levels of these hormones in the CSF of normal dogs. An approximately 100-fold difference between serum and CSF IGF-1 levels in vehicle control dogs suggest that there is a blood-brain barrier for the circulating IGF-1. Similarly, failure to see an elevation in CSF GH levels despite increases in serum GH levels shows that there is a blood-brain barrier for GH in normal dogs. These results suggest that the likely source of GH and IGF-1 in the CSF of dogs is from the CNS.  相似文献   

8.
9.
10.
The results of experiments on the transfer of bovine gene for growth hormone into mice and rabbits are presented. The gene was transferred by the technique of microinjection into the zygote. In all cases transgene in rabbits occurred to be changed. In two transgenic mice the bovine growth hormone gene represented some tandem arranged copies. One of the mice had accelerated growth. This phenotypic changes is found to be inheritable.  相似文献   

11.
Attenuation of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis results in extended lifespan in many organisms including mice. Conversely, GH transgenic mice have excess GH action and die prematurely. We have studied bovine (b) GH transgenic mice (n = 9) and their wild type (WT) littermates (n = 8) longitudinally and have determined several age-related changes. Compared to WT mice, bGH mice lost fat mass, became hypoglycemic and had lower insulin levels at older ages despite being hyperinsulinemic when young. To examine plasma protein differences in bGH mice relative to controls, samples at 2, 4, 8, 12 and 16 months of age were analyzed by two-dimensional gel electrophoresis followed by identification using mass spectrometry. We found several differences in plasma proteins of bGH mice compared to controls, including increased apolipoprotein E (five isoforms), haptoglobin (four isoforms) and mannose-binding protein-C (one out of three isoforms), and decreased transthyretin (six isoforms). In addition, clusterin (two out of six isoforms) and haptoglobin (four isoforms) were up-regulated in bGH mice as a function of age. Finally, alpha-2 macroglobulin (seven isoforms) was altered in an isoform-specific manner with two isoforms increased and two decreased in bGH mouse plasma compared to controls. In conclusion, identification of these proteins suggests that bGH mice exhibit an increased inflammatory state with an adverse lipid profile, possibly contributing to their diminished life expectancy. Also, these newly discovered plasma proteins may be indicative or ‘biomarkers’ of a shortened lifespan.  相似文献   

12.
Insulin and growth hormone (GH) play critical roles in the process of follicular development and maturation. However, the involvement of insulin receptor (IR) and GH receptor (GHR) during follicular development is not well understood. The aim of this study was to investigate the expression of IR and GHR mRNAs in the granulosa cells (GCs) and theca tissues (TCs) of the follicle at different developmental stages (preovulatory dominant follicles, POFs; estrogen-active dominant follicles, EADs; estrogen-inactive dominant follicles, EIDs; and small follicles, SFs), and second, to examine the effects of follicle-stimulating hormone (FSH) and estradiol (E2) on the expression of IR and GHR genes in cultured bovine GCs. Although the concentration of insulin in follicular fluid (FF) was constant at all developmental stages, the GH concentration in FF was significantly increased in the EAD and POF compared with the EID. IR mRNA in GCs and TCs was significantly increased in the POF compared with other follicles. Regarding GHR expression, significant increases of mRNA expression were observed in GCs of EAD compared to those of SF, EID and POF. GHR mRNA in TCs was significantly decreased in the SF compared with other follicles. In cultured GCs, FSH, but not E2, stimulated the expression of IR and GHR genes. Our results suggest that the increase in the expression of GHR may be a turning point for follicles to enter the ovulatory phase during final follicular development and that the insulin system may support the maturation of preovulatory follicles.  相似文献   

13.
Predicted amino acid sequences for the mouse GH receptor and the related serum GH binding protein were deducted from cDNAs. Two types of cDNA clones were isolated. Both types coded an identical peptide domain with extensive homology to the extracellular domains of the recently cloned human and rabbit GH receptors. However, while one type of clone also encoded regions with homology to the transmembrane and cytoplasmic domains of the human and rabbit GH receptors, the other encoded a short hydrophilic carboxyl-terminal region in place of the transmembrane domain. It is speculated that these two types of clones encode the high and low molecular weight variants of the mouse GH receptor/serum binding proteins, respectively. The low molecular weight variant has been previously found to constitute the majority of the serum GH binding activity in mice. It is proposed that the substitution of the hydrophilic tail for the transmembrane domain may give the low molecular weight variant its soluble nature and account for its presence in serum.  相似文献   

14.
The GH receptor (GHR) mediates GH effects by activating the GHR-associated cytoplasmic tyrosine kinase, Janus kinase 2. Recent studies indicate that GHRs exist as dimers independently of GH binding. Some authors suggest that receptor predimerization is mediated by the transmembrane domain (TMD) and that GH binding initiates signaling by triggering changes in the orientation of the two GHRs within the dimer. In this study, we investigate the role of GHR TMD in GH-independent receptor dimerization and ligand-induced activation. We prepared a GHR mutant, GHR(LDLR), in which the TMD is replaced with the TMD of the human low-density lipoprotein receptor (LDLR). The resultant chimera has a TMD two residues shorter than the native GHR TMD; thus, in addition to possessing a different TMD, the altered GHR(LDLR) TMD helical register may change positions of the GHR extracellular domain (ECD) and intracellular domain relative to the TMD when compared with the wild-type (WT) receptor. When each was coexpressed with an intracellular domain-truncated GHR mutant, GHR(1-274-Myc), both WT GHR and GHR(LDLR) were specifically coprecipitated with GHR(1-274-Myc), indicating that the GHR TMD was not required for GHR heterodimerization with GHR(1-274-Myc). We further examined the contribution of the so-called "dimerization interface," a GHR ECD region that is critical for GH-induced signaling, to receptor predimerization. Coimmunoprecipitation experiments with either WT GHR, a dimerization interface mutant (GHR-H150D), or a control mutant (GHR-T147D) with GHR(1-274-Myc) showed dramatically reduced coprecipitation of GHR-H150D with GHR(1-274-Myc) when compared with WT GHR or GHR-T147K. This result suggests that, in contrast to some recent models, the dimerization interface contributes to GHR predimerization. We also compared WT GHR with GHR(LDLR) and GHR(LDLRDelta4) (a chimera in which the LDLR TMD has an internal deletion of four residues) with regard to response to GH stimulation. Although the chimeras had similar GH dose responses and time courses for signaling as WT GHR, they were markedly less sensitive to inhibition of signaling by a conformation-sensitive GHR ECD monoclonal antibody. Further, the chimeras were much less sensitive to inducible metalloprotease cleavage than was WT GHR, implying that the ECD conformations of the chimera receptors differ from WT GHR. Collectively, our data indicate that the composition and/or length of the TMD affect some aspects of GHR function, but do not affect receptor predimerization or GH-induced GHR activation. Further, they suggest that the GHR ECD-TMD is more flexible than previously thought in terms of the ability to achieve the active conformation in response to GH.  相似文献   

15.
A series of transgenic mice was produced by microinjection of a segment of DNA, containing 460 base pairs of the phosphoenolpyruvate (P-enolpyruvate) carboxykinase promoter-regulatory region ligated to the bovine growth hormone structural gene, into the male pronucleus of fertilized mouse eggs. Founder animals which contained the gene were selected for further analysis and for breeding. The concentration of bovine growth hormone in the serum of animals which were shown to contain the gene ranged from a low of 5 ng/ml serum to approximately 2300 ng/ml serum. Mice with high levels of bovine growth hormone had growth rates double that of their litter mates which did not contain the transgene. The transgene was expressed only in the liver and kidney of the animals studied, and the level of specific mRNA for bovine growth hormone in these tissues could be regulated by diet in a manner similar to the endogenous P-enolpyruvate carboxykinase gene. Feeding the animals a diet high in carbohydrate for 1 week caused a 90% decrease in the concentration of bovine growth hormone in the blood, suggesting that the expression of the chimeric P-enolpyruvate carboxykinase/bovine growth hormone gene is sensitive to insulin. When the same animals were then refed a diet high in protein, but devoid of carbohydrate, the concentration of bovine growth hormone in their blood was induced 30-fold within a week. The administration of dibutyryl cyclic AMP to the transgenic mice caused a 2-fold induction in the level of bovine growth hormone in the serum within 90 min. Thus the region between -460/+73 in the P-enolpyruvate carboxykinase promoter-regulatory region contains sequences which can direct the tissue-specific expression, as well as hormonal and dietary responsiveness, of a linked structural gene.  相似文献   

16.
The ability of mutant bovine growth hormones (bGH) to serve as either agonist or antagonist has been demonstrated in transgenic mice. We have prepared two transgenic strains of FVB/N mice, one expressing wild-type bGH and a second with a glutamic acid mutation at serine 84 in helix 2. Comparison of their phenotypes to those of nontransgenic littermates indicates that wild-type bGH induces a previously described phenotype for hyper-somatotrophic mice. In contrast, the replacement of the side chain hydroxyl at serine 84 with acetic acid produced a phenotype that expressed bGH at appreciable concentrations, but failed to elicit the phenotype observed with either an agonist or an antagonist of bGH. These results indicate that serine 84 is crucial for the activity of bGH despite this site being distal to the receptor binding surfaces.  相似文献   

17.
18.
In women who are growth hormone (GH) deficient, exogenous estrogens increase the dosage of GH that is needed to normalize circulating levels of insulin-like growth factor (IGF-1). Serum IGF-1 derives mostly from the liver, and it is unknown whether the peripheral effects of GH are also impaired by estrogens. Because the ultimate effect of GH is longitudinal growth, we have investigated the influence of estrogen administration on the growth response to recombinant mouse GH therapy in prepubertal GH-deficient (GHD) GHRH knockout (GHRHKO) female mice. Twenty-four GHRHKO female mice (4 animals/group) were treated for 4 weeks (from the second to sixth week of age) with the following schedules: Group I, GH only (25 microg/day); Group II, subcutaneous (sc) ethynil estradiol (EE) (0.035 ES01247g/day); Group III, GH + scEE; Group IV, oral (po) EE (0.035 microg/day); Group V, GH + poEE; Group VI, placebo. At the end of the treatment period, we measured uterine weight, total body weight (TBW), body length (nose-anus, N-A), and femur length. In addition, serum IGF-1 levels were measured. Uteri of mice treated with oral or scEE showed similar increases in weight. There was no difference in the increase in longitudinal growth parameters between mice treated with GH alone or with GH in association with oral or scEE. Serum IGF-1 decreased in animals treated with GH + scEE, compared with GH group, but no group was significantly different from placebo. These results show that subcutaneous or oral EE does not reduce the growth response to GH in female GHD mice.  相似文献   

19.
We have isolated and cloned the full length cDNA for mouse GH-releasing hormone (mGRH) from mouse hypothalamus using a recently described strategy involving the polymerase chain reaction technique (PCR). Degenerate oligonucleotide primers were selected based on short (six amino acids) conserved regions in the human and rat GRH peptides that would recognize DNA sequences encoding similar amino acids regardless of codon usage. Primer-extended cDNA was amplified by PCR on cDNA templates prepared by reverse transcribing total mouse hypothalamic RNA. After cloning and sequencing the initial product, the 3' and 5' ends of mGRH were generated using a separate PCR strategy (RACE protocol). The mGRH cDNA encodes a 103-amino acid reading frame, structurally similar to the human and rat GRH genes, containing a signal sequence, a 42-residue GRH peptide, and a 31-residue C-terminal region. Although the structures of mouse and rat GRH are highly conserved in the signal peptide and C-terminal region, there is considerable diversity in the GRH region, which exhibits nearly comparable homology with the rat (68%) and human (62%) structures. Differences between mouse and rat GRH were also found in the amino acid cleavage sites at the 5' and 3' ends of the mature peptide and at the polyadenylation signal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In rat pituitary GH3 cells, thyrotropin-releasing hormone (TRH) down-regulates TRH receptor (TRH-R) mRNA (Fujimoto, J., Straub, R.E., and Gershengorn, M.C. (1991) Mol. Endocrinol. 5, 1527-1532), at least in part, by stimulating its degradation (Fujimoto, J., Narayanan, C.S., Benjamin, J.E., Heinflink, M., and Gershengorn, M.C. (1992) Endocrinology 130, 1879-1884). Here we show that TRH regulates RNase activity in GH3 cells and that specific mRNA sequences are needed for in vivo regulation of TRH-R mRNA by TRH. TRH affected RNase activity in a biphasic manner with rapid stimulation (by 10 min) followed by a decrease to a rate slower than in control lysates within 6 h. This time course paralleled the effects of TRH on degradation of TRH-R mRNA in vivo. The regulated RNase activity was in a polysome-free fraction of the lysates and was not specific for TRH-R RNA. A truncated form of TRH-R RNA that was missing the entire 3'-untranslated region (TRHR-R5) was more stable than full-length TRH-R RNA (TRHR-WT). In contrast to TRHR-WT mRNA, TRHR-R5 mRNA and TRHR-D9 mRNA, which was missing the 143 nucleotides 5' of the poly(A) tail, were not down-regulated by TRH in stably transfected GH3 cells as their rates of degradation were not increased. These data show that TRH regulates RNase activity in GH3 cells, that the 3'-untranslated region bestows decreased stability on TRH-R mRNA and that the 3' end of the mRNA is necessary for regulation by TRH of TRH-R mRNA degradation. We present an hypothesis that explains specific regulation of TRH-R mRNA degradation by TRH in GH3 pituitary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号