首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extrachromosomal circular DNA (eccDNA) are present within all eukaryotic organisms and actively contribute to gene expression changes. MicroDNA (200-1000bp) are the most abundant type of eccDNA and can amplify tRNA, microRNA, and novel si-like RNA sequences. Due to the heterogeneity of microDNA and the limited technology to directly quantify circular DNA molecules, the specific DNA repair pathways that contribute to microDNA formation have not been fully elucidated. Using a sensitive and quantitative assay that quantifies eight known abundant microDNA, we report that microDNA levels are dependent on resection after double-strand DNA break (DSB) and repair by Microhomology Mediated End Joining (MMEJ). Further, repair of DSB without resection by canonical Non-Homologous End Joining (c-NHEJ) diminishes microDNA formation. MicroDNA levels are induced locally even by a single site-directed DSB, suggesting that excision of genomic DNA by two closely spaced DSB is not necessary for microDNA formation. Consistent with all this, microDNA levels accumulate as cells undergo replication in S-phase, when DNA breaks and repair are elevated, and microDNA levels are decreased if DNA synthesis is prevented. Thus, formation of microDNA occurs during the repair of endogenous or induced DNA breaks by resection-based DNA repair pathways.  相似文献   

2.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle.  相似文献   

3.
Chromosomal aberrations (CA) are the microscopically visible part of a wide spectrum of DNA changes generated by different repair mechanisms of DNA double strand breaks (DSB). The method of fluorescence in situ hybridisation (FISH) has uncovered unexpected complexities of CA and this will lead to changes in our thinking about the origin of CA. The inter- and intrachromosomal distribution of breakpoints is generally not random. CA breakpoints occur preferentially in active chromatin. Deviations from expected interchromosomal distributions of breakpoints may result from the arrangement of chromosomes in the interphase nucleus and/or from different sensitivities of chromosomes with respect to the formation of CA. Telomeres and interstitial telomere repeat like sequences play an important role in the formation of CA. Subtelomeric regions are hot spots for the formation of symmetrical exchanges between homologous chromatids and cryptic aberrations in these regions are associated with human congenital abnormalities.  相似文献   

4.
Molecular mechanisms of DNA double-strand break repair   总被引:24,自引:0,他引:24  
DNA double-strand breaks (DSBs) are major threats to the genomic integrity of cells. If not taken care of properly, they can cause chromosome fragmentation, loss and translocation, possibly resulting in carcinogenesis. Upon DSB formation, cell-cycle checkpoints are triggered and multiple DSB repair pathways can be activated. Recent research on the Nijmegen breakage syndrome, which predisposes patients to cancer, suggests a direct link between activation of cell-cycle checkpoints and DSB repair. Furthermore, the biochemical activities of proteins involved in the two major DSB repair pathways, homologous recombination and DNA end-joining, are now beginning to emerge. This review discusses these new findings and their implications for the mechanisms of DSB repair.  相似文献   

5.
6.
Zebularine is a second-generation, highly stable hydrophilic inhibitor of DNA methylation with oral bioavailability that preferentially target cancer cells. It acts primarily as a trap for DNA methyl transferases (DNMTs) protein by forming covalent complexes between DNMT protein and zebularine-substrate DNA. It’s well documented that replication-blocking DNA lesions can cause replication fork collapse and thereby to the formation of DNA double-strand breaks (DSB). DSB are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSB are non-homologous end joining (NHEJ) and homologous recombination (HR). Recently, multiple functions for the HR machinery have been identified at arrested forks. Here we investigate in more detail the importance of the lesions induced by zebularine in terms of DNA damage and cytotoxicity as well as the role of HR in the repair of these lesions. When we examined the contribution of NHEJ and HR in the repair of DSB induced by zebularine we found that these breaks were preferentially repaired by HR. Also we show that the production of DSB is dependent on active replication. To test this, we determined chromosome damage by zebularine while transiently inhibiting DNA synthesis. Here we report that cells deficient in single-strand break (SSB) repair are hypersensitive to zebularine. We have observed more DSB induced by zebularine in XRCC1 deficient cells, likely to be the result of conversion of SSB into toxic DSB when encountered by a replication fork. Furthermore we demonstrate that HR is required for the repair of these breaks. Overall, our data suggest that zebularine induces replication-dependent DSB which are preferentially repaired by HR.  相似文献   

7.
Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.  相似文献   

8.
Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice.  相似文献   

9.
Repair of DNA double strand breaks (DSBs) plays a critical role in the maintenance of the genome. DSB arise frequently as a consequence of replication fork stalling and also due to the attack of exogenous agents. Repair of broken DNA is essential for survival. Two major pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to deal with these lesions, and are conserved from yeast to vertebrates. Despite the conservation of these pathways, their relative contribution to DSB repair varies greatly between these two species. HR plays a dominant role in any DSB repair in yeast, whereas NHEJ significantly contributes to DSB repair in vertebrates. This active NHEJ requires a regulatory mechanism to choose HR or NHEJ in vertebrate cells. In this review, we illustrate how HR and NHEJ are differentially regulated depending on the phase of cell cycle and on the nature of the DSB.  相似文献   

10.
Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways.  相似文献   

11.
12.
Beaucher M  Zheng XF  Amariei F  Rong YS 《Genetics》2012,191(2):407-417
Telomeres protect chromosome ends from being repaired as double-strand breaks (DSBs). Just as DSB repair is suppressed at telomeres, de novo telomere addition is suppressed at the site of DSBs. To identify factors responsible for this suppression, we developed an assay to monitor de novo telomere formation in Drosophila, an organism in which telomeres can be established on chromosome ends with essentially any sequence. Germline expression of the I-SceI endonuclease resulted in precise telomere formation at its cut site with high efficiency. Using this assay, we quantified the frequency of telomere formation in different genetic backgrounds with known or possible defects in DNA damage repair. We showed that disruption of DSB repair factors (Rad51 or DNA ligase IV) or DSB sensing factors (ATRIP or MDC1) resulted in more efficient telomere formation. Interestingly, partial disruption of factors that normally regulate telomere protection (ATM or NBS) also led to higher frequencies of telomere formation, suggesting that these proteins have opposing roles in telomere maintenance vs. establishment. In the ku70 mutant background, telomere establishment was preceded by excessive degradation of DSB ends, which were stabilized upon telomere formation. Most strikingly, the removal of ATRIP caused a dramatic increase in telomeric retrotransposon attachment to broken ends. Our study identifies several pathways that suppress telomere addition at DSBs, paving the way for future mechanistic studies.  相似文献   

13.
DNA double strand breaks (DSBs) induced by ionizing radiation (IR) are deleterious damages. Two major pathways repair DSBs in human cells, DNA non-homologous end-joining (NHEJ) and homologous recombination (HR). It has been suggested that the balance between the two repair pathways varies depending on the chromatin structure surrounding the damage site and/or the complexity of damage at the DNA break ends. Heavy ion radiation is known to induce complex-type DSBs, and the efficiency of NHEJ in repairing these DSBs was shown to be diminished. Taking advantage of the ability of high linear energy transfer (LET) radiation to produce complex DSBs effectively, we investigated how the complexity of DSB end structure influences DNA damage responses. An early step in HR is the generation of 3′-single strand DNA (SSD) via a process of DNA end resection that requires CtIP. To assess this process, we analyzed the level of phosphorylated CtIP, as well as RPA phosphorylation and focus formation, which occur on the exposed SSD. We show that complex DSBs efficiently activate DNA end resection. After heavy ion beam irradiation, resection signals appear both in the vicinity of heterochromatic areas, which is also observed after X-irradiation, and additionally in euchromatic areas. Consequently, ∼85% of complex DSBs are subjected to resection in heavy ion particle tracks. Furthermore, around 20–40% of G1 cells exhibit resection signals. Taken together, our observations reveal that the complexity of DSB ends is a critical factor regulating the choice of DSB repair pathway and drastically alters the balance toward resection-mediated rejoining. As demonstrated here, studies on DNA damage responses induced by heavy ion radiation provide an important tool to shed light on mechanisms regulating DNA end resection.  相似文献   

14.
DNA double-strand break repair by homologous recombination   总被引:11,自引:0,他引:11  
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.  相似文献   

15.
The use of reporter systems to analyze DNA double-strand break(DSB) repairs,based on the enhanced green fluorescent protein (EGFP) and meganuclease such as I-Sce I,is usually carried out with cell lines.In this study,we developed three visual-plus quantitative assay systems for homologous recombination(HR),non-homologous end joining(NHEJ) and single-strand annealing(SSA) DSB repair pathways at the organismal level in zebrafish embryos.To initiate DNA DSB repair,we used two I-Sce I recognition sites in opposite orientation rather than the usual single site.The NHEJ,HR and SSA repair pathways were separately triggered by the injection of three corresponding I-Sce I-cut constructions,and the repair of DNA lesion caused by l-Sce I could be tracked by EGFP expression in the embryos.Apart from monitoring the intensity of green fluorescence,the repair frequencies could also be precisely measured by quantitative real-time polymerase chain reaction(qPCR).Analysis of DNA sequences at the DSB sites showed that NHEJ was predominant among these three repair pathways in zebrafish embryos.Furthermore,while HR and SSA reporter systems could be effectively decreased by the knockdown of rad51 and rad52,respectively,NHEJ could only be impaired by the knockdown of ligaseIV(lig4) when the NHEJ construct was cut by I-Sce I in vivo.More interestingly,blocking NHEJ with lig4-MO increased the frequency of HR,but decreased the frequency of SSA.Our studies demonstrate that the major mechanisms used to repair DNA DSBs are conserved from zebrafish to mammal,and zebrafish provides an excellent model for studying and manipulating DNA DSB repair at the organismal level.  相似文献   

16.
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.  相似文献   

17.
NBS1 forms a complex with MRE11 and RAD50 (MRN) that is proposed to act on the upstream of two repair pathways of DNA double-strand break (DSB), homologous repair (HR) and non-homologous end joining (NHEJ). However, the function of Nbs1 in these processes has not fully been elucidated in mammals due to the lethal phenotype of cells and mice lacking Nbs1. Here, we have constructed mouse Nbs1-null embryonic fibroblasts and embryonic stem cells, through the Cre-loxP and sequential gene targeting techniques. We show that cells lacking Nbs1 display reduced HR of the single DSB in chromosomally integrated substrate, affecting both homology-directed repair (HDR) and single-stranded annealing pathways, and, surprisingly, increased NHEJ-mediated sequence deletion. Moreover, focus formation at DSBs and chromatin recruitment of the Nbs1 partners Rad50 and Mre11 as well as Rad51 and Brca1 are attenuated in these cells, whereas the NHEJ molecule Ku70 binding to chromatin is not affected. These data provide a novel insight into the function of MRN in the branching of DSB repair pathways.  相似文献   

18.
The DNA double-strand breaks (DSBs) that initiate meiotic recombination in Saccharomyces cerevisiae are preceded first by DNA replication and then by a chromatin transition at DSB sites. This chromatin transition, detected as a quantitative increase in micrococcal nuclease (MNase) sensitivity, occurs specifically at DSB sites and not at other MNase-sensitive sites. Replication and DSB formation are directly linked: breaks do not form if replication is blocked, and delaying replication of a region also delays DSB formation in that region. We report here experiments that examine the relationship between replication, the DSB-specific chromatin transition and DSB formation. Deleting replication origins (and thus delaying replication) on the left arm of one of the two parental chromosomes III affects DSBs specifically on that replication-delayed arm and not those on the normally replicating arm. Thus, replication timing determines DSB timing in cis. Delaying replication on the left arm of chromosome III also delays the chromatin transition at DSB sites on that arm but not on the normally replicating right arm. Since the chromatin transition precedes DSB formation and requires the function of many genes necessary for DSB formation, these results suggest that initial events for DSB formation in chromatin are coupled with premeiotic DNA replication.  相似文献   

19.
DNA double stranded breaks (DSBs) are one of the most deleterious types of DNA lesions. The main pathways responsible for repairing these breaks in eukaryotic cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). However, a third group of still poorly characterized DSB repair pathways, collectively termed microhomology-mediated end-joining (MMEJ), relies on short homologies for the end-joining process. Here, we constructed GFP reporter assays to characterize and distinguish MMEJ variant pathways, namely the simple MMEJ and the DNA synthesis-dependent (SD)-MMEJ mechanisms. Transfection of these assay vectors in Chinese hamster ovary (CHO) cells and characterization of the repaired DNA sequences indicated that while simple MMEJ is able to mediate relatively efficient DSB repair if longer microhomologies are present, the majority of DSBs were repaired using the highly error-prone SD-MMEJ pathway. To validate the involvement of DNA synthesis in the repair process, siRNA knock-down of different genes proposed to play a role in MMEJ were performed, revealing that the knock-down of DNA polymerase θ inhibited DNA end resection and repair through simple MMEJ, thus favoring the other repair pathway. Overall, we conclude that this approach provides a convenient assay to study MMEJ-related DNA repair pathways.  相似文献   

20.
In most taxa, halving of chromosome numbers during meiosis requires that homologous chromosomes (homologues) pair and form crossovers. Crossovers emerge from the recombination-mediated repair of programmed DNA double-strand breaks (DSBs). DSBs are generated by SPO11, whose activity requires auxiliary protein complexes, called pre-DSB recombinosomes. To elucidate the spatiotemporal control of the DSB machinery, we focused on an essential SPO11 auxiliary protein, IHO1, which serves as the main anchor for pre-DSB recombinosomes on chromosome cores, called axes. We discovered that DSBs restrict the DSB machinery by at least four distinct pathways in mice. Firstly, by activating the DNA damage response (DDR) kinase ATM, DSBs restrict pre-DSB recombinosome numbers without affecting IHO1. Secondly, in their vicinity, DSBs trigger IHO1 depletion mainly by another DDR kinase, ATR. Thirdly, DSBs enable homologue synapsis, which promotes the depletion of IHO1 and pre-DSB recombinosomes from synapsed axes. Finally, DSBs and three DDR kinases, ATM, ATR and PRKDC, enable stage-specific depletion of IHO1 from all axes. We hypothesize that these four negative feedback pathways protect genome integrity by ensuring that DSBs form without excess, are well-distributed, and are restricted to genomic locations and prophase stages where DSBs are functional for promoting homologue pairing and crossover formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号