首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R B Russell  G J Barton 《Proteins》1992,14(2):309-323
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs.  相似文献   

2.
We examine how effectively simple potential functions previously developed can identify compatibilities between sequences and structures of proteins for database searches. The potential function consists of pairwise contact energies, repulsive packing potentials of residues for overly dense arrangement and short-range potentials for secondary structures, all of which were estimated from statistical preferences observed in known protein structures. Each potential energy term was modified to represent compatibilities between sequences and structures for globular proteins. Pairwise contact interactions in a sequence-structure alignment are evaluated in a mean field approximation on the basis of probabilities of site pairs to be aligned. Gap penalties are assumed to be proportional to the number of contacts at each residue position, and as a result gaps will be more frequently placed on protein surfaces than in cores. In addition to minimum energy alignments, we use probability alignments made by successively aligning site pairs in order by pairwise alignment probabilities. The results show that the present energy function and alignment method can detect well both folds compatible with a given sequence and, inversely, sequences compatible with a given fold, and yield mostly similar alignments for these two types of sequence and structure pairs. Probability alignments consisting of most reliable site pairs only can yield extremely small root mean square deviations, and including less reliable pairs increases the deviations. Also, it is observed that secondary structure potentials are usefully complementary to yield improved alignments with this method. Remarkably, by this method some individual sequence-structure pairs are detected having only 5-20% sequence identity.  相似文献   

3.
Russell AJ  Torda AE 《Proteins》2002,47(4):496-505
Multiple sequence alignments are a routine tool in protein fold recognition, but multiple structure alignments are computationally less cooperative. This work describes a method for protein sequence threading and sequence-to-structure alignments that uses multiple aligned structures, the aim being to improve models from protein threading calculations. Sequences are aligned into a field due to corresponding sites in homologous proteins. On the basis of a test set of more than 570 protein pairs, the procedure does improve alignment quality, although no more than averaging over sequences. For the force field tested, the benefit of structure averaging is smaller than that of adding sequence similarity terms or a contribution from secondary structure predictions. Although there is a significant improvement in the quality of sequence-to-structure alignments, this does not directly translate to an immediate improvement in fold recognition capability.  相似文献   

4.
Structure comparisons of all representative proteins have been done. Employing the relative root mean square deviation (RMSD) from native enables the assessment of the statistical significance of structure alignments of different lengths in terms of a Z-score. Two conclusions emerge: first, proteins with their native fold can be distinguished by their Z-score. Second and somewhat surprising, all small proteins up to 100 residues in length have significant structure alignments to other proteins in a different secondary structure and fold class; i.e. 24.0% of them have 60% coverage by a template protein with a RMSD below 3.5 Å and 6.0% have 70% coverage. If the restriction that we align proteins only having different secondary structure types is removed, then in a representative benchmark set of proteins of 200 residues or smaller, 93% can be aligned to a single template structure (with average sequence identity of 9.8%), with a RMSD less than 4 Å, and 79% average coverage. In this sense, the current Protein Data Bank (PDB) is almost a covering set of small protein structures. The length of the aligned region (relative to the whole protein length) does not differ among the top hit proteins, indicating that protein structure space is highly dense. For larger proteins, non-related proteins can cover a significant portion of the structure. Moreover, these top hit proteins are aligned to different parts of the target protein, so that almost the entire molecule can be covered when combined. The number of proteins required to cover a target protein is very small, e.g. the top ten hit proteins can give 90% coverage below a RMSD of 3.5 Å for proteins up to 320 residues long. These results give a new view of the nature of protein structure space, and its implications for protein structure prediction are discussed.  相似文献   

5.
The availability of fast and robust algorithms for protein structure comparison provides an opportunity to produce a database of three-dimensional comparisons, called families of structurally similar proteins (FSSP). The database currently contains an extended structural family for each of 154 representative (below 30% sequence identity) protein chains. Each data set contains: the search structure; all its relatives with 70-30% sequence identity, aligned structurally; and all other proteins from the representative set that contain substructures significantly similar to the search structure. Very close relatives (above 70% sequence identity) rarely have significant structural differences and are excluded. The alignments of remote relatives are the result of pairwise all-against-all structural comparisons in the set of 154 representative protein chains. The comparisons were carried out with each of three novel automatic algorithms that cover different aspects of protein structure similarity. The user of the database has the choice between strict rigid-body comparisons and comparisons that take into account interdomain motion or geometrical distortions; and, between comparisons that require strictly sequential ordering of segments and comparisons, which allow altered topology of loop connections or chain reversals. The data sets report the structurally equivalent residues in the form of a multiple alignment and as a list of matching fragments to facilitate inspection by three-dimensional graphics. If substructures are ignored, the result is a database of structure alignments of full-length proteins, including those in the twilight zone of sequence similarity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Shih ES  Hwang MJ 《Proteins》2004,56(3):519-527
Comparison of two protein structures often results in not only a global alignment but also a number of distinct local alignments; the latter, referred to as alternative alignments, are however usually ignored in existing protein structure comparison analyses. Here, we used a novel method of protein structure comparison to extensively identify and characterize the alternative alignments obtained for structure pairs of a fold classification database. We showed that all alternative alignments can be classified into one of just a few types, and with which illustrated the potential of using alternative alignments to identify recurring protein substructures, including the internal structural repeats of a protein. Furthermore, we showed that among the alternative alignments obtained, permuted alignments, which included both circular and scrambled permutations, are as prevalent as topological alignments. These results demonstrated that the so far largely unattended alternative alignments of protein structures have implications and applications for research of protein classification and evolution.  相似文献   

8.
Improving fold recognition without folds   总被引:4,自引:0,他引:4  
The most reliable way to align two proteins of unknown structure is through sequence-profile and profile-profile alignment methods. If the structure for one of the two is known, fold recognition methods outperform purely sequence-based alignments. Here, we introduced a novel method that aligns generalised sequence and predicted structure profiles. Using predicted 1D structure (secondary structure and solvent accessibility) significantly improved over sequence-only methods, both in terms of correctly recognising pairs of proteins with different sequences and similar structures and in terms of correctly aligning the pairs. The scores obtained by our generalised scoring matrix followed an extreme value distribution; this yielded accurate estimates of the statistical significance of our alignments. We found that mistakes in 1D structure predictions correlated between proteins from different sequence-structure families. The impact of this surprising result was that our method succeeded in significantly out-performing sequence-only methods even without explicitly using structural information from any of the two. Since AGAPE also outperformed established methods that rely on 3D information, we made it available through. If we solved the problem of CPU-time required to apply AGAPE on millions of proteins, our results could also impact everyday database searches.  相似文献   

9.
We report the largest and most comprehensive comparison of protein structural alignment methods. Specifically, we evaluate six publicly available structure alignment programs: SSAP, STRUCTAL, DALI, LSQMAN, CE and SSM by aligning all 8,581,970 protein structure pairs in a test set of 2930 protein domains specially selected from CATH v.2.4 to ensure sequence diversity. We consider an alignment good if it matches many residues, and the two substructures are geometrically similar. Even with this definition, evaluating structural alignment methods is not straightforward. At first, we compared the rates of true and false positives using receiver operating characteristic (ROC) curves with the CATH classification taken as a gold standard. This proved unsatisfactory in that the quality of the alignments is not taken into account: sometimes a method that finds less good alignments scores better than a method that finds better alignments. We correct this intrinsic limitation by using four different geometric match measures (SI, MI, SAS, and GSAS) to evaluate the quality of each structural alignment. With this improved analysis we show that there is a wide variation in the performance of different methods; the main reason for this is that it can be difficult to find a good structural alignment between two proteins even when such an alignment exists. We find that STRUCTAL and SSM perform best, followed by LSQMAN and CE. Our focus on the intrinsic quality of each alignment allows us to propose a new method, called "Best-of-All" that combines the best results of all methods. Many commonly used methods miss 10-50% of the good Best-of-All alignments. By putting existing structural alignments into proper perspective, our study allows better comparison of protein structures. By highlighting limitations of existing methods, it will spur the further development of better structural alignment methods. This will have significant biological implications now that structural comparison has come to play a central role in the analysis of experimental work on protein structure, protein function and protein evolution.  相似文献   

10.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

11.
This paper evaluates the results of a protein structure prediction contest. The predictions were made using threading procedures, which employ techniques for aligning sequences with 3D structures to select the correct fold of a given sequence from a set of alternatives. Nine different teams submitted 86 predictions, on a total of 21 target proteins with little or no sequence homology to proteins of known structure. The 3D structures of these proteins were newly determined by experimental methods, but not yet published or otherwise available to the predictors. The predictions, made from the amino acid sequence alone, thus represent a genuine test of the current performance of threading methods. Only a subset of all the predictions is evaluated here. It corresponds to the 44 predictions submitted for the 11 target proteins seen to adopt known folds. The predictions for the remaining 10 proteins were not analyzed, although weak similarities with known folds may also exist in these proteins. We find that threading methods are capable of identifying the correct fold in many cases, but not reliably enough as yet. Every team predicts correctly a different set of targets, with virtually all targets predicted correctly by at least one team. Also, common folds such as TIM barrels are recognized more readily than folds with only a few known examples. However, quite surprisingly, the quality of the sequence-structure alignments, corresponding to correctly recognized folds, is generally very poor, as judged by comparison with the corresponding 3D structure alignments. Thus, threading can presently not be relied upon to derive a detailed 3D model from the amino acid sequence. This raises a very intriguing question: how is fold recognition achieved? Our analysis suggests that it may be achieved because threading procedures maximize hydrophobic interactions in the protein core, and are reasonably good at recognizing local secondary structure. © 1995 Wiley-Liss, Inc.  相似文献   

12.

Background  

Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction.  相似文献   

13.
Kosloff M  Kolodny R 《Proteins》2008,71(2):891-902
It is often assumed that in the Protein Data Bank (PDB), two proteins with similar sequences will also have similar structures. Accordingly, it has proved useful to develop subsets of the PDB from which "redundant" structures have been removed, based on a sequence-based criterion for similarity. Similarly, when predicting protein structure using homology modeling, if a template structure for modeling a target sequence is selected by sequence alone, this implicitly assumes that all sequence-similar templates are equivalent. Here, we show that this assumption is often not correct and that standard approaches to create subsets of the PDB can lead to the loss of structurally and functionally important information. We have carried out sequence-based structural superpositions and geometry-based structural alignments of a large number of protein pairs to determine the extent to which sequence similarity ensures structural similarity. We find many examples where two proteins that are similar in sequence have structures that differ significantly from one another. The source of the structural differences usually has a functional basis. The number of such proteins pairs that are identified and the magnitude of the dissimilarity depend on the approach that is used to calculate the differences; in particular sequence-based structure superpositioning will identify a larger number of structurally dissimilar pairs than geometry-based structural alignments. When two sequences can be aligned in a statistically meaningful way, sequence-based structural superpositioning provides a meaningful measure of structural differences. This approach and geometry-based structure alignments reveal somewhat different information and one or the other might be preferable in a given application. Our results suggest that in some cases, notably homology modeling, the common use of nonredundant datasets, culled from the PDB based on sequence, may mask important structural and functional information. We have established a data base of sequence-similar, structurally dissimilar protein pairs that will help address this problem (http://luna.bioc.columbia.edu/rachel/seqsimstrdiff.htm).  相似文献   

14.
C A Orengo  N P Brown  W R Taylor 《Proteins》1992,14(2):139-167
A fast method is described for searching and analyzing the protein structure databank. It uses secondary structure followed by residue matching to compare protein structures and is developed from a previous structural alignment method based on dynamic programming. Linear representations of secondary structures are derived and their features compared to identify equivalent elements in two proteins. The secondary structure alignment then constrains the residue alignment, which compares only residues within aligned secondary structures and with similar buried areas and torsional angles. The initial secondary structure alignment improves accuracy and provides a means of filtering out unrelated proteins before the slower residue alignment stage. It is possible to search or sort the protein structure databank very quickly using just secondary structure comparisons. A search through 720 structures with a probe protein of 10 secondary structures required 1.7 CPU hours on a Sun 4/280. Alternatively, combined secondary structure and residue alignments, with a cutoff on the secondary structure score to remove pairs of unrelated proteins from further analysis, took 10.1 CPU hours. The method was applied in searches on different classes of proteins and to cluster a subset of the databank into structurally related groups. Relationships were consistent with known families of protein structure.  相似文献   

15.
For applications such as comparative modelling one major issue is the reliability of sequence alignments. Reliable regions in alignments can be predicted using sub-optimal alignments of the same pair of sequences. Here we show that reliable regions in alignments can also be predicted from multiple sequence profile information alone.Alignments were created for a set of remotely related pairs of proteins using five different test methods. Structural alignments were used to assess the quality of the alignments and the aligned positions were scored using information from the observed frequencies of amino acid residues in sequence profiles pre-generated for each template structure. High-scoring regions of these profile-derived alignment scores were a good predictor of reliably aligned regions.These profile-derived alignment scores are easy to obtain and are applicable to any alignment method. They can be used to detect those regions of alignments that are reliably aligned and to help predict the quality of an alignment. For those residues within secondary structure elements, the regions predicted as reliably aligned agreed with the structural alignments for between 92% and 97.4% of the residues. In loop regions just under 92% of the residues predicted to be reliable agreed with the structural alignments. The percentage of residues predicted as reliable ranged from 32.1% for helix residues to 52.8% for strand residues.This information could also be used to help predict conserved binding sites from sequence alignments. Residues in the template that were identified as binding sites, that aligned to an identical amino acid residue and where the sequence alignment agreed with the structural alignment were in highly conserved, high scoring regions over 80% of the time. This suggests that many binding sites that are present in both target and template sequences are in sequence-conserved regions and that there is the possibility of translating reliability to binding site prediction.  相似文献   

16.
17.
Most homologous pairs of proteins have no significant sequence similarity to each other and are not identified by direct sequence comparison or profile-based strategies. However, multiple sequence alignments of low similarity homologues typically reveal a limited number of positions that are well conserved despite diversity of function. It may be inferred that conservation at most of these positions is the result of the importance of the contribution of these amino acids to the folding and stability of the protein. As such, these amino acids and their relative positions may define a structural signature. We demonstrate that extraction of this fold template provides the basis for the sequence database to be searched for patterns consistent with the fold, enabling identification of homologs that are not recognized by global sequence analysis. The fold template method was developed to address the need for a tool that could comprehensively search the midnight and twilight zones of protein sequence similarity without reliance on global statistical significance. Manual implementations of the fold template method were performed on three folds--immunoglobulin, c-lectin and TIM barrel. Following proof of concept of the template method, an automated version of the approach was developed. This automated fold template method was used to develop fold templates for 10 of the more populated folds in the SCOP database. The fold template method developed three-dimensional structural motifs or signatures that were able to return a diverse collection of proteins, while maintaining a low false positive rate. Although the results of the manual fold template method were more comprehensive than the automated fold template method, the diversity of the results from the automated fold template method surpassed those of current methods that rely on statistical significance to infer evolutionary relationships among divergent proteins.  相似文献   

18.
Multiple protein structure alignment.   总被引:5,自引:2,他引:3       下载免费PDF全文
A method was developed to compare protein structures and to combine them into a multiple structure consensus. Previous methods of multiple structure comparison have only concatenated pairwise alignments or produced a consensus structure by averaging coordinate sets. The current method is a fusion of the fast structure comparison program SSAP and the multiple sequence alignment program MULTAL. As in MULTAL, structures are progressively combined, producing intermediate consensus structures that are compared directly to each other and all remaining single structures. This leads to a hierarchic "condensation," continually evaluated in the light of the emerging conserved core regions. Following the SSAP approach, all interatomic vectors were retained with well-conserved regions distinguished by coherent vector bundles (the structural equivalent of a conserved sequence position). Each bundle of vectors is summarized by a resultant, whereas vector coherence is captured in an error term, which is the only distinction between conserved and variable positions. Resultant vectors are used directly in the comparison, which is weighted by their error values, giving greater importance to the matching of conserved positions. The resultant vectors and their errors can also be used directly in molecular modeling. Applications of the method were assessed by the quality of the resulting sequence alignments, phylogenetic tree construction, and databank scanning with the consensus. Visual assessment of the structural superpositions and consensus structure for various well-characterized families confirmed that the consensus had identified a reasonable core.  相似文献   

19.
J Hargbo  A Elofsson 《Proteins》1999,36(1):68-76
There are many proteins that share the same fold but have no clear sequence similarity. To predict the structure of these proteins, so called "protein fold recognition methods" have been developed. During the last few years, improvements of protein fold recognition methods have been achieved through the use of predicted secondary structures (Rice and Eisenberg, J Mol Biol 1997;267:1026-1038), as well as by using multiple sequence alignments in the form of hidden Markov models (HMM) (Karplus et al., Proteins Suppl 1997;1:134-139). To test the performance of different fold recognition methods, we have developed a rigorous benchmark where representatives for all proteins of known structure are matched against each other. Using this benchmark, we have compared the performance of automatically-created hidden Markov models with standard-sequence-search methods. Further, we combine the use of predicted secondary structures and multiple sequence alignments into a combined method that performs better than methods that do not use this combination of information. Using only single sequences, the correct fold of a protein was detected for 10% of the test cases in our benchmark. Including multiple sequence information increased this number to 16%, and when predicted secondary structure information was included as well, the fold was correctly identified in 20% of the cases. Moreover, if the correct secondary structure was used, 27% of the proteins could be correctly matched to a fold. For comparison, blast2, fasta, and ssearch identifies the fold correctly in 13-17% of the cases. Thus, standard pairwise sequence search methods perform almost as well as hidden Markov models in our benchmark. This is probably because the automatically-created multiple sequence alignments used in this study do not contain enough diversity and because the current generation of hidden Markov models do not perform very well when built from a few sequences.  相似文献   

20.
An appropriate structural superposition identifies similarities and differences between homologous proteins that are not evident from sequence alignments alone. We have coupled our Gaussian‐weighted RMSD (wRMSD) tool with a sequence aligner and seed extension (SE) algorithm to create a robust technique for overlaying structures and aligning sequences of homologous proteins (HwRMSD). HwRMSD overcomes errors in the initial sequence alignment that would normally propagate into a standard RMSD overlay. SE can generate a corrected sequence alignment from the improved structural superposition obtained by wRMSD. HwRMSD's robust performance and its superiority over standard RMSD are demonstrated over a range of homologous proteins. Its better overlay results in corrected sequence alignments with good agreement to HOMSTRAD. Finally, HwRMSD is compared to established structural alignment methods: FATCAT, secondary‐structure matching, combinatorial extension, and Dalilite. Most methods are comparable at placing residue pairs within 2 Å, but HwRMSD places many more residue pairs within 1 Å, providing a clear advantage. Such high accuracy is essential in drug design, where small distances can have a large impact on computational predictions. This level of accuracy is also needed to correct sequence alignments in an automated fashion, especially for omics‐scale analysis. HwRMSD can align homologs with low‐sequence identity and large conformational differences, cases where both sequence‐based and structural‐based methods may fail. The HwRMSD pipeline overcomes the dependency of structural overlays on initial sequence pairing and removes the need to determine the best sequence‐alignment method, substitution matrix, and gap parameters for each unique pair of homologs. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号