首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Existing evidence suggests that neuropeptide Y (NPY) acts as a neurotransmitter in vascular smooth muscle and is coreleased with norepinephrine from sympathetic nerves. We hypothesized that release of NPY stimulates NPY Y(1) receptors in the skeletal muscle vasculature to produce vasoconstriction during dynamic exercise. Eleven mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. In resting dogs (n = 4), a 2.5-mg bolus of BIBP-3226 (NPY Y(1) antagonist) infused into the femoral artery increased external iliac conductance by 150 +/- 82% (1.80 +/- 0.44 to 3.50 +/- 0.14 ml.min(-1).mmHg(-1); P < 0.05). A 10-mg bolus of BIBP-3226 infused into the femoral artery in dogs (n = 7) exercising on a treadmill at a moderate intensity (6 miles/h) increased external iliac conductance by 28 +/- 6% (6.00 +/- 0.49 to 7.64 +/- 0.61 ml.min(-1).mmHg(-1); P < 0.05), whereas the solvent vehicle did not (5.74 +/- 0.51 to 5.98 +/- 0.43 ml.min(-1).mmHg(-1); P > 0.05). During exercise, BIBP-3226 abolished the reduction in conductance produced by infusions of the NPY Y(1) agonist [Leu(31),Pro(34)]NPY (-19 +/- 3 vs. 0.5 +/- 1%). Infusions of BIBP-3226 (n = 7) after alpha-adrenergic receptor antagonism with prazosin and rauwolscine also increased external iliac conductance (6.82 +/- 0.43 to 8.22 +/- 0.48 ml.min(-1).mmHg(-1); P < 0.05). These data support the hypothesis that NPY Y(1) receptors produce vasoconstriction in exercising skeletal muscle. Furthermore, the NPY Y(1) receptor-mediated tone appears to be independent of alpha-adrenergic receptor-mediated vasoconstriction.  相似文献   

2.
We tested for a nonnoradrenergic mechanism of reflex cutaneous vasoconstriction with whole body progressive cooling in seven men. Forearm sites (<1 cm(2)) were pretreated with: 1) yohimbine (Yoh; 5 mM id) to antagonize alpha-adrenergic receptors, 2) Yoh plus propranolol (5 mM Yoh-1 mM PR id) to block alpha- and beta-adrenergic receptors, 3) iontophoretic application of bretylium tosylate (BT) to block all sympathetic vasoconstrictor nerve effects, or 4) intradermal saline. Skin blood flow was measured by laser Doppler flowmetry and arterial pressure by finger photoplethysmography; cutaneous vascular conductance (CVC) was indexed as the ratio of the two. Whole body skin temperature (T(SK)) was controlled at 34 degrees C (water-perfused suit) for 10 min and then lowered to 31 degrees C over 15 min. During cooling, vasoconstriction was blocked at BT sites (P > 0.05). CVC at saline sites fell significantly beginning at T(SK) of 33.4 +/- 0.01 degrees C (P <0.05). CVC at Yoh-PR sites was significantly reduced beginning at TSK of 33.0 +/- 0.01 degrees C (P < 0.05). After cooling, iontophoretic application of norepinephrine (NE) confirmed blockade of adrenergic receptors by Yoh-PR. Because the effects of NE were blocked at sites showing significant reflex vasoconstriction, a nonnoradrenergic mechanism in human skin is indicated, probably via a sympathetic cotransmitter.  相似文献   

3.
Previous work indicates that sympathetic nerves participate in the vascular responses to direct cooling of the skin in humans. We evaluated this hypothesis further in a four-part series by measuring changes in cutaneous vascular conductance (CVC) from forearm skin locally cooled from 34 to 29 degrees C for 30 min. In part 1, bretylium tosylate reversed the initial vasoconstriction (-14 +/- 6.6% control CVC, first 5 min) to one of vasodilation (+19.7 +/- 7.7%) but did not affect the response at 30 min (-30.6 +/- 9% control, -38.9 +/- 6.9% bretylium; both P < 0.05, P > 0.05 between treatments). In part 2, yohimbine and propranolol (YP) also reversed the initial vasoconstriction (-14.3 +/- 4.2% control) to vasodilation (+26.3 +/- 12.1% YP), without a significant effect on the 30-min response (-26.7 +/- 6.1% YP, -43.2 +/- 6.5% control; both P < 0.05, P > 0.05 between sites). In part 3, the NPY Y1 receptor antagonist BIBP 3226 had no significant effect on either phase of vasoconstriction (P > 0.05 between sites both times). In part 4, sensory nerve blockade by anesthetic cream (Emla) also reversed the initial vasoconstriction (-20.1 +/- 6.4% control) to one of vasodilation (+213.4 +/- 87.0% Emla), whereas the final levels did not differ significantly (-37.7 +/- 10.1% control, -37.2 +/- 8.7% Emla; both P < 0.05, P > 0.05 between treatments). These results indicate that local cooling causes cold-sensitive afferents to activate sympathetic nerves to release norepinephrine, leading to a local cutaneous vasoconstriction that masks a nonneurogenic vasodilation. Later, a vasoconstriction develops with or without functional sensory or sympathetic nerves.  相似文献   

4.
Cutaneous vasoconstriction (VC) is the initial thermoregulatory response to cold exposure and can be elicited through either whole body or localized skin cooling. However, the mechanisms governing local cold-induced VC are not well understood. We tested the hypothesis that Rho kinase participates in local cold-induced cutaneous VC. In seven men and women (20-27 yr of age), up to four ventral forearm skin sites were instrumented with intradermal microdialysis fibers for localized drug delivery during cooling. Skin blood flow was monitored at each site with laser-Doppler flowmetry while local skin temperature was decreased and maintained at 24 degrees C for 40 min. Cutaneous vascular conductance (CVC; laser-Doppler flowmetry/mean arterial pressure) was expressed as percent change from 34 degrees C baseline. During the first 5 min of cooling, CVC decreased at control sites (lactated Ringer solution) to -45 +/- 6% (P < 0.001), increased at adrenoceptor-antagonized sites (yohimbine + propranolol) to 15 +/- 14% (P = 0.002), and remained unchanged at both Rho kinase-inhibited (fasudil) and adrenoceptor-antagonized + Rho kinase-inhibited sites (yohimbine + propranolol + fasudil) (-9 +/- 1%, P = 0.4 and -6 +/- 2%, P = 0.4, respectively). During the last 5 min of cooling, CVC further decreased at all sites when compared with baseline values (control, -77 +/- 4%, P < 0.001; adrenoceptor antagonized, -61 +/- 3%, P < 0.001; Rho kinase inhibited, -34 +/- 7%, P < 0.001; and adrenoceptor antagonized + Rho kinase inhibited sites, -35 +/- 3%, P < 0.001). Rho kinase-inhibited and combined treatment sites were significantly attenuated when compared with both adrenoceptor-antagonized (P < 0.01) and control sites (P < 0.0001). Rho kinase mediates both early- and late-phase cold-induced VC, supporting in vitro findings and providing a putative mechanism through which both adrenergic and nonadrenergic cold-induced VC occurs in an in vivo human thermoregulatory model.  相似文献   

5.
Local cooling (LC) causes a cutaneous vasoconstriction (VC). In this study, we tested whether there is a mechanism that links LC to VC nerve function via sensory nerves. Six subjects participated. Local skin and body temperatures were controlled with Peltier probe holders and water-perfused suits, respectively. Skin blood flow at four forearm sites was monitored by laser-Doppler flowmetry with the following treatments: untreated control, pretreatment with local anesthesia (LA) blocking sensory nerve function, pretreatment with bretylium tosylate (BT) blocking VC nerve function, and pretreatment with both LA and BT. Local skin temperature was slowly reduced from 34 to 29 degrees C at all four sites. Both sites treated with LA produced an increase in cutaneous vascular conductance (CVC) early in the LC process (64 +/- 55%, LA only; 42 +/- 14% LA plus BT; P < 0.05), which was absent at the control and BT-only sites (5 +/- 8 and 6 +/- 8%, respectively; P > 0.05). As cooling continued, there were significant reductions in CVC at all sites (P < 0.05). At control and LA-only sites, CVC decreased by 39 +/- 4 and 46 +/- 8% of the original baseline values, which were significantly (P < 0.05) more than the reductions in CVC at the sites treated with BT and BT plus LA (-26 +/- 8 and -22 +/- 6%). Because LA affected only the short-term response to LC, either alone or in the presence of BT, we conclude that sensory nerves are involved early in the VC response to LC, but not for either adrenergic or nonadrenergic VC with longer term LC.  相似文献   

6.
We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVC(max)); DMSO, 14 ± 3% CVC(max); Ringer, 17 ± 6% CVC(max); P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVC(max); DMSO, 64 ± 4% CVC(max); Ringer, 63 ± 4% CVC(max); P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVC(max); DMSO, 18 ± 4% CVC(max); Ringer, 18 ± 3% CVC(max); P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVC(max); DMSO, 86 ± 4% CVC(max); Ringer, 90 ± 2% CVC(max); P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.  相似文献   

7.
D L Kellogg  Y Liu  P E Pérgola 《Journal of applied physiology》2001,91(5):2407-11; discussion 2389-90
To test whether the contribution of endothelin-B (ET-B) receptors to resting vascular tone differs between genders, we administered the ET-B receptor antagonist BQ-788 into the forearm skin of 11 male and 11 female subjects by intradermal microdialysis. Skin blood flow was measured using laser-Doppler flowmetry at the microdialysis site. The probe was perfused with Ringer solution alone, followed by BQ-788 (150 nM) and finally sodium nitroprusside (28 mM) to effect maximal cutaneous vasodilation. Cutaneous vascular conductance (CVC) was calculated (laser-Doppler flowmetry/mean arterial pressure) and normalized to maximal levels (%max). In male subjects, baseline CVC was (mean +/- SE) 19 +/- 3%max and increased to 26 +/- 5%max with BQ-788 (P < 0.05 vs. baseline). In female subjects, baseline CVC was 13 +/- 1%max and decreased to 10 +/- 1%max in response to BQ-788. CVC responses to BQ-788 differed with gender (P < 0.05); thus the contribution of ET-B receptors to resting cutaneous vascular tone differs between men and women. In men, ET-B receptors mediate tonic vasoconstriction, whereas, in women, ET-B receptors mediate tonic vasodilation.  相似文献   

8.
To test for a diurnal difference in the vasoconstrictor control of the cutaneous circulation, we performed whole body skin cooling (water-perfused suits) at 0600 (AM) and 1600 (PM). After whole body skin temperature (T(sk)) was controlled at 35 degrees C for 10 min, it was progressively lowered to 32 degrees C over 18-20 min. Skin blood flow (SkBF) was monitored by laser-Doppler flowmetry at three control sites and at a site that had been pretreated with bretylium by iontophoresis to block noradrenergic vasoconstriction. After whole body skin cooling, maximal cutaneous vascular conductance (CVC) was measured by locally warming the sites of SkBF measurement to 42 degrees C for 30 min. Before whole body skin cooling, sublingual temperature (T(or)) in the PM was significantly higher than that in the AM (P < 0.05), but CVC, expressed as a percentage of maximal CVC (%CVC(max)), was not statistically different between AM and PM. During whole body skin cooling, %CVC(max) levels at bretylium-treated sites in AM or PM were not significantly reduced from baseline. In the PM, %CVC(max) at control sites fell significantly at T(sk) of 34.3 +/- 0.01 degrees C and lower (P < 0.05). In contrast, in the AM %CVC(max) at control sites was not significantly reduced from baseline until T(sk) reached 32.3 +/- 0.01 degrees C and lower (P < 0.05). Furthermore, the decrease in %CVC(max) in the PM was significantly greater than that in AM at T(sk) of 33.3 +/- 0.01 degrees C and lower (P < 0.05). Integrative analysis of the CVC response with respect to both T(or) and T(sk) showed that the cutaneous vasoconstrictor response was shifted to higher internal temperatures in the PM. These findings suggest that during whole body skin cooling the reflex control of the cutaneous vasoconstrictor system is shifted to a higher internal temperature in the PM. Furthermore, the slope of the relationship between CVC and T(sk) is steeper in the PM compared with that in the AM.  相似文献   

9.
Systemic hypoxia causes cutaneous vasodilation in healthy humans.   总被引:1,自引:0,他引:1  
Hypoxia and hypercapnia represent special challenges to homeostasis because of their effects on sympathetic outflow and vascular smooth muscle. In the cutaneous vasculature, even small changes in perfusion can shift considerable blood volume to the periphery and thereby impact both blood pressure regulation and thermoregulation. However, little is known about the influence of hypoxia and hypercapnia on this circulation. In the present study, 35 healthy subjects were instrumented with two microdialysis fibers in the ventral forearm. Each site was continuously perfused with saline (control) or bretylium tosylate (10 mM) to prevent sympathetically mediated vasoconstriction. Skin blood flow was assessed at each site (laser-Doppler flowmetry), and cutaneous vascular conductance (CVC) was calculated as red blood cell flux/mean arterial pressure and normalized to baseline. In 13 subjects, isocapnic hypoxia (85 and 80% O(2) saturation) increased CVC to 120 +/- 10 and 126 +/- 7% baseline in the control site (both P < 0.05) and 113 +/- 3 (P = 0.087) and 121 +/- 4% baseline (P < 0.05) in the bretylium site. Adrenergic blockade did not affect the magnitude of this response (P > 0.05). In nine subjects, hyperpnea (matching hypoxic increases in tidal volume) caused no change in CVC in either site (both P > 0.05). In 13 subjects, hypercapnia (+5 and +9 Torr) increased CVC to 111 +/- 4 and 111 +/- 4% baseline, respectively, in the control site (both P < 0.05), whereas the bretylium site remained unchanged (both P > 0.05). Thus both hypoxia and hypercapnia cause modest vasodilation in nonacral skin. Adrenergic vasoconstriction of neural origin does not restrain hypoxic vasodilation, but may be important in hypercapnic vasodilation.  相似文献   

10.
Previous work showed that local cooling (LC) attenuates the vasoconstrictor response to whole body cooling (WBC). We tested the extent to which this attenuation was due to the decreased baseline skin blood flow following LC. In eight subjects, skin blood flow was assessed using laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was expressed as LDF divided by blood pressure. Subjects were dressed in water-perfused suits to control WBC. Four forearm sites were prepared with microdialysis fibers, local heating/cooling probe holders, and laser-Doppler probes. Three sites were locally cooled from 34 to 28 degrees C, reducing CVC to 45.9 +/- 3.9, 42 +/- 3.9, and 44.5 +/- 4.8% of baseline (P < 0.05 vs. baseline; P > 0.05 among sites). At two sites, CVC was restored to precooling baseline levels with sodium nitroprusside (SNP) or isoproterenol (Iso), increasing CVC to 106.4 +/- 12.4 and 98.9 +/- 10.1% of baseline, respectively (P > 0.05 vs. precooling). Whole body skin temperature, apart from the area of blood flow measurement, was reduced from 34 to 31 degrees C. Relative to the original baseline, CVC decreased (P < 0.05) by 44.9 +/- 2.8 (control), 11.3 +/- 2.4 (LC only), 29 +/- 3.7 (SNP), and 45.8 +/- 8.7% (Iso). The reductions at LC only and SNP sites were less than at control or Iso sites (P < 0.05); the responses at those latter sites were not different (P > 0.05), suggesting that the baseline change in CVC with LC is important in the attenuation of reflex vasoconstrictor responses to WBC.  相似文献   

11.
Presynaptic blockade of cutaneous vasoconstrictor nerves (VCN) abolishes the axon reflex (AR) during slow local heating (SLH) and reduces the vasodilator response. In a two-part study, forearm sites were instrumented with microdialysis fibers, local heaters, and laser-Doppler flow probes. Sites were locally heated from 33 to 40 degrees C over 70 min. In part 1, we tested whether this effect of VCN acted via nitric oxide synthase (NOS). In five subjects, treatments were as follows: 1) untreated; 2) bretylium, preventing neurotransmitter release; 3) N(G)-nitro-L-arginine methyl ester (L-NAME) to inhibit NOS; and 4) combined bretylium + L-NAME. At treated sites, the AR was absent, and there was an attenuation of the ultimate vasodilation (P < 0.05), which was not different among those sites (P > 0.05). In part 2, we tested whether norepinephrine and/or neuropeptide Y is involved in the cutaneous vasodilator response to SLH. In seven subjects, treatments were as follows: 1) untreated; 2) propranolol and yohimbine to antagonize alpha- and beta-receptors; 3) BIBP-3226 to antagonize Y(1) receptors; and 4) combined propranolol + yohimbine + BIBP-3226. Treatment with propranolol + yohimbine or BIBP-3226 significantly increased the temperature at which AR occurred (n = 4) or abolished it (n = 3). The combination treatment consistently eliminated it. Importantly, ultimate vasodilation with SLH at the treated sites was significantly (P < 0.05) less than at the control. These data suggest that norepinephrine and neuropeptide Y are important in the initiation of the AR and for achieving a complete vasodilator response. Since VCN and NOS blockade in combination do not have an inhibition greater than either alone, these data suggest that VCN promote heat-induced vasodilation via a nitric oxide-dependent mechanism.  相似文献   

12.
We tested the hypothesis that local heating-induced nitric oxide (NO) production attenuates cutaneous vasoconstrictor responsiveness. Eleven subjects (6 men, 5 women) had four microdialysis membranes placed in forearm skin. Two membranes were perfused with 10 mM of N(G)-nitro-L-arginine (L-NAME) and two with Ringer solution (control), and all sites were locally heated to 34 degrees C. Subjects then underwent 5 min of 60-mmHg lower body negative pressure (LBNP). Two sites (a control and an L-NAME site) were then heated to 39 degrees C, while the other two sites were heated to 42 degrees C. At the L-NAME sites, skin blood flow was elevated using 0.75-2 mg/ml of adenosine in the perfusate solution (Adn + L-NAME) to a similar level relative to control sites. Subjects then underwent another 5 min of 60-mmHg LBNP. At 34 degrees C, cutaneous vascular conductance (CVC) decreased (Delta) similarly at both control and L-NAME sites during LBNP (Delta7.9 +/- 3.0 and Delta3.4 +/- 0.8% maximum, respectively; P > 0.05). The reduction in CVC to LBNP was also similar between control and Adn + L-NAME sites at 39 degrees C (control Delta11.4 +/- 2.5 vs. Adn + L-NAME Delta7.9 +/- 2.0% maximum; P > 0.05) and 42 degrees C (control Delta1.9 +/- 2.7 vs. Adn + L-NAME Delta 4.2 +/- 2.7% maximum; P > 0.05). However, the decrease in CVC at 42 degrees C, regardless of site, was smaller than at 39 degrees C (P < 0.05). These results do not support the hypothesis that local heating-induced NO production attenuates cutaneous vasoconstrictor responsiveness during high levels of LBNP. However, elevated local temperature, per se, attenuates cutaneous vasoconstrictor responsiveness to LBNP, presumably through non-nitric oxide mechanisms.  相似文献   

13.
To test the hypothesis that bradykinin effects cutaneous active vasodilation during hyperthermia, we examined whether the increase in skin blood flow (SkBF) during heat stress was affected by blockade of bradykinin B(2) receptors with the receptor antagonist HOE-140. Two adjacent sites on the forearm were instrumented with intradermal microdialysis probes for local delivery of drugs in eight healthy subjects. HOE-140 was dissolved in Ringer solution (40 microM) and perfused at one site, whereas the second site was perfused with Ringer alone. SkBF was monitored by laser-Doppler flowmetry (LDF) at both sites. Mean arterial pressure (MAP) was monitored from a finger, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Water-perfused suits were used to control body temperature and evoke hyperthermia. After hyperthermia, both microdialysis sites were perfused with 28 mM nitroprusside to effect maximal vasodilation. During hyperthermia, CVC increased at HOE-140 (69 +/- 2% maximal CVC, P < 0.01) and untreated sites (65 +/- 2% maximal CVC, P < 0.01). These responses did not differ between sites (P > 0.05). Because the bradykinin B(2)-receptor antagonist HOE-140 did not alter SkBF responses to heat stress, we conclude that bradykinin does not mediate cutaneous active vasodilation.  相似文献   

14.
The specific mechanisms by which skin blood flow increases in response to a rise in core body temperature via cutaneous active vasodilation are poorly understood. The primary purpose of this study was to determine whether the cyclooxygenase (COX) pathway contributes to active vasodilation during whole body heat stress (protocol 1; n = 9). A secondary goal was to verify that the COX pathway does not contribute to the cutaneous hyperemic response during local heating (protocol 2; n = 4). For both protocols, four microdialysis fibers were placed in forearm skin. Sites were randomly assigned and perfused with 1) Ringer solution (control site); 2) ketorolac (KETO), a COX-1/COX-2 pathway inhibitor; 3) NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor; and 4) a combination of KETO and L-NAME. During the first protocol, active vasodilation was induced using whole body heating with water-perfused suits. The second protocol used local heaters to induce a local hyperemic response. Red blood cell flux (RBC flux) was indexed at all sites using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC; RBC flux/mean arterial pressure) was normalized to maximal vasodilation at each site. During whole body heating, CVC values at sites perfused with KETO (43 +/- 9% CVCmax), L-NAME (35 +/- 9% CVCmax), and combined KETO/L-NAME (22 +/- 8% CVCmax) were significantly decreased with respect to the control site (59 +/- 7% CVCmax) (P < 0.05). Additionally, CVC at the combined KETO/L-NAME site was significantly decreased compared with sites infused with KETO or L-NAME alone (P < 0.05). In the second protocol, the hyperemic response to local heating did not differ between the control site and KETO site or between the L-NAME and KETO/L-NAME site. These data suggest that prostanoids contribute to active vasodilation, but do not play a role during local thermal hyperemia.  相似文献   

15.
Reactive hyperemia is the sudden rise in blood flow after release of an arterial occlusion. Currently, the mechanisms mediating this response in the cutaneous circulation are poorly understood. The purpose of this study was to 1). characterize the reactive hyperemic response in the cutaneous circulation and 2). determine the contribution of nitric oxide (NO) to reactive hyperemia. Using laser-Doppler flowmetry, we characterized reactive hyperemia after 3-, 5-, 10-, and 15-min arterial occlusions in 10 subjects. The total hyperemic response was calculated by taking the area under the curve (AUC) of the hyperemic response minus baseline skin blood flow (SkBF) [i.e., total hyperemic response = AUC - [baseline SkBF as %maximal cutaneous vascular conductance (CVC(max) x duration of hyperemic response in s]]. For the characterization protocol, the total hyperemic response significantly increased as the period of ischemia increased from 5 to 15 min (P < 0.05). However, the 3-min response was not significantly different from the 5-min response. In the NO contribution protocol, two microdialysis fibers were placed in the forearm skin of eight subjects. One site served as a control and was continuously perfused with Ringer solution. The second site was continuously perfused with 10 mM NG-nitro-l-arginine methyl ester (l-NAME) to inhibit NO synthase. CVC was calculated as flux/mean arterial pressure and normalized to maximal blood flow (28 mM sodium nitroprusside). The total hyperemic response in control sites was not significantly different from l-NAME sites after a 5-min occlusion (3261 +/- 890 vs. 2907 +/- 531% CVC(max. s). Similarly, total hyperemic responses in control sites were not different from l-NAME sites (9155 +/- 1121 vs. 9126 +/- 1088% CVC(max. s) after a 15-min arterial occlusion. These data suggest that NO does not directly mediate reactive hyperemia and that NO is not produced in response to an increase in shear stress in the cutaneous circulation.  相似文献   

16.
Full expression of reflex cutaneous vasodilation (VD) is dependent on nitric oxide (NO) and is attenuated in older humans. NO may be decreased by an age-related increase in reactive oxygen species or a decrease in L-arginine availability via upregulated arginase. The purpose of this study was to determine the effect of acute antioxidant supplementation alone and combined with arginase inhibition on reflex VD in aged skin. Eleven young (Y; 22 +/- 1 yr) and 10 older (O; 68 +/- 1 yr) human subjects were instrumented with four intradermal microdialysis (MD) fibers. MD sites were control (Co), NO synthase inhibited (NOS-I), L-ascorbate supplemented (Asc), and Asc + arginase-inhibited (Asc + A-I). After baseline measurements, subjects underwent whole body heating to increase oral temperature (T(or)) by 0.8 degrees C. Red blood cell flux was measured by using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC) was calculated (CVC = flux/mean arterial pressure) and normalized to maximal (CVC(max)). VD during heating was attenuated in O (Y: 37 +/- 3 vs. O: 28 +/- 3% CVC(max); P < 0.05). NOS-I decreased VD in both groups compared with Co (Y: 20 +/- 4; O: 15 +/- 2% CVC(max); P < 0.05 vs. Co within group). Asc and Asc + A-I increased VD beyond Co in O (Asc: 35 +/- 4% CVC(max); Asc + A-I: 41 +/- 3% CVC(max); P < 0.001) but not in Y (Asc: 36 +/- 3% CVC(max); Asc + A-I: 40 +/- 5% CVC(max); P > 0.05). Combined Asc + A-I resulted in a greater increase in VD than Asc alone in O (P = 0.001). Acute Asc supplementation increased reflex VD in aged skin. Asc combined with arginase inhibition resulted in a further increase in VD above Asc alone, effectively restoring CVC to the level of young subjects.  相似文献   

17.
Nitric oxide (NO) participates in locally mediated vasodilation induced by increased local skin temperature (T(loc)) and in sympathetically mediated vasodilation during whole body heat stress. We hypothesized that endothelial NOS (eNOS) participates in the former, but not the latter, response. We tested this hypothesis by examining the effects of the eNOS antagonist N(G)-amino-l-arginine (l-NAA) on skin blood flow (SkBF) responses to increased T(loc) and whole body heat stress. Microdialysis probes were inserted into forearm skin for drug delivery. One microdialysis site was perfused with l-NAA in Ringer solution and a second site with Ringer solution alone. SkBF [laser-Doppler flowmetry (LDF)] and blood pressure [mean arterial pressure (MAP)] were monitored, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF / MAP). In protocol 1, T(loc) was controlled with LDF/local heating units. T(loc) initially was held at 34 degrees C and then increased to 41.5 degrees C. In protocol 2, after a normothermic period, whole body heat stress was induced (water-perfused suits). At the end of both protocols, 58 mM sodium nitroprusside was perfused at both microdialysis sites to cause maximal vasodilation for data normalization. In protocol 1, CVC at 34 degrees C T(loc) did not differ between l-NAA-treated and untreated sites (P > 0.05). Local skin warming to 41.5 degrees C T(loc) increased CVC at both sites. This response was attenuated at l-NAA-treated sites (P < 0.05). In protocol 2, during normothermia, CVC did not differ between l-NAA-treated and untreated sites (P > 0.05). During heat stress, CVC rose to similar levels at l-NAA-treated and untreated sites (P > 0.05). We conclude that eNOS is predominantly responsible for NO generation in skin during responses to increased T(loc), but not during reflex responses to whole body heat stress.  相似文献   

18.
To determine whether cardiovascular influences of exogenous female steroid hormones include effects on reflex thermoregulatory control of the adrenergic cutaneous vasoconstrictor system, we conducted ramp decreases in skin temperature (T(sk)) in eight women in both high- and low (placebo)-progesterone/estrogen phases of oral contraceptive use. With the use of water-perfused suits, T(sk) was held at 36 degrees C for 10 min (to minimize initial vasoconstrictor activity) and was then decreased in a ramp, approximately 0.2 degrees C/min for 12-15 min. Subjects rested supine for 30-40 min before each experiment, and the protocol was terminated before the onset of shivering. Skin blood flow was monitored by laser-Doppler flowmetry and arterial pressure by finger photoplethysmography. In all experiments, cutaneous vasoconstriction began immediately with the onset of cooling, and cutaneous vascular conductance (CVC) decreased progressively with decreasing T(sk). Regression analysis of the relationship of CVC to T(sk) showed no difference in slope between phases (low-hormone phase: 17.67 +/- 5.57; high-hormone phase: 17.40 +/- 8.00 %baseline/ degrees C; P > 0.05). Additional studies involving local blockade confirmed this response as being solely due to the adrenergic vasoconstrictor system. Waking oral temperature (T(or)) was significantly higher on high-hormone vs. low-hormone days (36.60 +/- 0.11 vs. 36.37 +/- 0.09 degrees C, respectively; P < 0.02). Integrative analysis of CVC in terms of simultaneous values for T(sk) and T(or) showed that the cutaneous vasoconstrictor response was shifted in the high-hormone phase such that a higher T(or) was maintained throughout cooling (P < 0.05). Thus reflex thermoregulatory control of the cutaneous vasoconstrictor system is shifted to higher internal temperatures by exogenous female reproductive hormones.  相似文献   

19.
Hyperoxia induces skin vasoconstriction in humans, but the mechanism is still unclear. In the present study we examined whether the vasoconstrictor response to hyperoxia is through activated adrenergic function (protocol 1) or through inhibitory effects on nitric oxide synthase (NOS) and/or cyclooxygenase (COX) (protocol 2). We also tested whether any such vasoconstrictor effect is altered by body heating. In protocol 1 (n = 11 male subjects), release of norepinephrine from adrenergic terminals in the forearm skin was blocked locally by iontophoresis of bretylium (BT). In protocol 2, the NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the nonselective COX antagonist ketorolac (Keto) were separately administered by intradermal microdialysis in 11 male subjects. In the two protocols, subjects breathed 21% (room air) or 100% O(2) in both normothermia and hyperthermia. Skin blood flow (SkBF) was monitored by laser-Doppler flowmetry. Cutaneous vascular conductance (CVC) was calculated as the ratio of SkBF to blood pressure measured by Finapres. In protocol 1, breathing 100% O(2) decreased (P < 0.05) CVC at the BT-treated and at untreated sites from the levels of CVC during 21% O(2) breathing both in normothermia and hyperthermia. In protocol 2, the administration of l-NAME inhibited (P < 0.05) the reduction of CVC during 100% O(2) breathing in both thermal conditions. The administration of Keto inhibited (P < 0.05) the reduction of CVC during 100% O(2) breathing in hyperthermia but not in normothermia. These results suggest that skin vasoconstriction with hyperoxia is partly due to the decreased activity of functional NOS in normothermia and hyperthermia. We found no significant role for adrenergic mechanisms in hyperoxic vasoconstriction. Decreased production of vasodilator prostaglandins may play a role in hyperoxia-induced cutaneous vasoconstriction in heat-stressed humans.  相似文献   

20.
Cutaneous vasoconstriction (VC), a critical thermoregulatory response to cold, is generally impaired with aging. However, the effects of aging on local cooling-induced VC and its underlying mechanisms are poorly understood. We tested whether aged skin exhibits attenuated localized cold-induced VC and whether Rho kinase-mediated cold-induced VC is augmented with age. Skin blood flow was monitored with laser Doppler flowmetry (LDF) on seven young and seven older subjects. Cutaneous vascular conductance (CVC; LDF/mean arterial pressure) was expressed as percentage change from baseline (%DeltaCVC(base)). In protocol 1, two forearm skin sites were cooled to six temperatures (31.5-19 degrees C) for 10 min each or two temperatures (29 degrees C, 24 degrees C) for 30 min each, with no age differences in the magnitude of VC. In protocol 2, three forearm skin sites were instrumented for intradermal microdialysis and cooled to 24 degrees C for 40 min. During minutes 1-5, there was no age difference in CVC responses at control sites (young: -45 +/- 6% vs. older: -46 +/- 3%, P > 0.9). Adrenoceptor antagonism (yohimbine + propranolol) abolished VC in young (to +15 +/- 13%, P < 0.05) but only partially inhibited VC in older subjects (to -23 +/- 6%, P < 0.05). Rho kinase inhibition plus adrenoceptor antagonism (yohimbine + propranolol + fasudil) abolished VC in both groups. During minutes 35-40, there was no age difference in control (young: -77 +/- 4% vs. older: -70 +/- 2%, P > 0.3) or adrenoceptor-antagonized responses (young: -61 +/- 3% vs. older: -55 +/- 2%, P > 0.3); however, Rho kinase inhibition plus adrenoceptor antagonism blocked more VC in older compared with young subjects (-19 +/- 11% vs. -35 +/- 3%, P < 0.05). Although its magnitude remains unaffected, cold-induced VC becomes less dependent on adrenergic and more dependent on Rho kinase signaling with advancing age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号