首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigated the role of AMPKalpha2in basal, exercise training-, and AICAR-induced protein expression of GLUT4, hexokinase II (HKII), mitochondrial markers, and AMPK subunits. This was conducted in red (RG) and white gastrocnemius (WG) muscle from wild-type (WT) and alpha2-knockout (KO) mice after 28 days of activity wheel running or daily AICAR injection. Additional experiments were conducted to measure acute activation of AMPK by exercise and AICAR. At basal, mitochondrial markers were reduced by approximately 20% in alpha2-KO muscles compared with WT. In both muscle types, AMPKalpha2 activity was increased in response to both stimuli, whereas AMPKalpha1 activity was increased only in response to exercise. Furthermore, AMPK signaling was estimated to be 60-70% lower in alpha2-KO compared with WT muscles. In WG, AICAR treatment increased HKII, GLUT4, cytochrome c, COX-1, and CS, and the alpha2-KO abolished the AICAR-induced increases, whereas no AICAR responses were observed in RG. Exercise training increased GLUT4, HKII, COX-1, CS, and HAD protein in WG, but the alpha2-KO did not affect training-induced increases. Furthermore, AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 subunits were reduced in RG, but not in WG, by 30-60% in response to exercise training. In conclusion, the alpha2-KO was associated with an approximately 20% reduction in mitochondrial markers in both muscle types and abolished AICAR-induced increases in protein expression in WG. However, the alpha2-KO did not reduce training-induced increases in HKII, GLUT4, COX-1, HAD, or CS protein in WG, suggesting that AMPKalpha2 may not be essential for metabolic adaptations of skeletal muscles to exercise training.  相似文献   

3.
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.  相似文献   

4.
Nitric oxide (NO) and 5'-AMP-activated protein kinase (AMPK) are involved in glucose transport and mitochondrial biogenesis in skeletal muscle. Here, we examined whether NO regulates the expression of the major glucose transporter in muscle (GLUT4) and whether it influences AMPK-induced upregulation of GLUT4. At low levels, the NO donor S-nitroso-N-penicillamine (SNAP, 1 and 10 microM) significantly increased GLUT4 mRNA ( approximately 3-fold; P < 0.05) in L6 myotubes, and cotreatment with the AMPK inhibitor compound C ablated this effect. The cGMP analog 8-bromo-cGMP (8-Br-cGMP, 2 mM) increased GLUT4 mRNA by approximately 50% (P < 0.05). GLUT4 protein expression was elevated 40% by 2 days treatment with 8-Br-cGMP, whereas 6 days treatment with 10 microM SNAP increased GLUT4 expression by 65%. Cotreatment of cultures with the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one prevented the SNAP-induced increase in GLUT4 protein. SNAP (10 microM) also induced significant phosphorylation of alpha-AMPK and acetyl-CoA carboxylase and translocation of phosphorylated alpha-AMPK to the nucleus. Furthermore, L6 myotubes exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 16 h presented an approximately ninefold increase in GLUT4 mRNA, whereas cotreatment with the non-isoform-specific NOS inhibitor N(G)-nitro-l-arginine methyl ester, prevented approximately 70% of this effect. In vivo, GLUT4 mRNA was increased 1.8-fold in the rat plantaris muscle 12 h after AICAR injection, and this induction was reduced by approximately 50% in animals cotreated with the neuronal and inducible nitric oxide synthases selective inhibitor 1-(2-trifluoromethyl-phenyl)-imidazole. We conclude that, in skeletal muscle, NO increases GLUT4 expression via a cGMP- and AMPK-dependent mechanism. The data are consistent with a role for NO in the regulation of AMPK, possibly via control of cellular activity of AMPK kinases and/or AMPK phosphatases.  相似文献   

5.
AimsThe aim of this study was to determine the effect of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, on monocarboxylate transporter 4 (MCT4) expression in rat skeletal muscle and a prototypic embryonal rhabdomyosarcoma cell line (RD cells).Main methodsWe examined the alteration in Glucose transporter 4 (GLUT4) and MCT4 mRNA levels by quantitative real-time PCR. Alteration in GLUT4 and MCT4 protein levels was examined by Western blotting.Key findingsIn an in vivo study, AICAR increased MCT4 mRNA and protein levels in a fiber-type specific manner. In an in vitro study, AICAR increased MCT4 mRNA and protein levels. Moreover, AICAR-induced MCT4 expression was blocked by Compound C, an AMPK inhibitor.SignificanceIn this study, we found that AMPK activation induced expression of MCT4 in RD cells and rat skeletal muscle in a fiber-type specific manner. These results indicate the possible involvement of an AMPK-mediated pathway associated with MCT4 expression in skeletal muscle.  相似文献   

6.
The microvascular partial pressure of oxygen (Pmv(o(2))) kinetics following the onset of exercise reflects the relationship between muscle O(2) delivery and uptake (Vo(2)). Although AMP-activated protein kinase (AMPK) is known as a regulator of mitochondria and nitric oxide metabolism, it is unclear whether the dynamic balance of O(2) delivery and Vo(2) at exercise onset is dependent on AMPK activation level. We used transgenic mice with muscle-specific AMPK dominant-negative (AMPK-DN) to investigate a role for skeletal muscle AMPK on Pmv(o(2)) kinetics following onset of muscle contractions. Phosphorescence quenching techniques were used to measure Pmv(o(2)) at rest and across the transition to twitch (1 Hz) and tetanic (100 Hz, 3-5 V, 4-ms pulse duration, stimulus duration of 100 ms every 1 s for 1 min) contractions in gastrocnemius muscles (each group n = 6) of AMPK-DN mice and wild-type littermates (WT) under isoflurane anesthesia with 100% inspired O(2) to avoid hypoxemia. Baseline Pmv(o(2)) before contractions was not different between groups (P > 0.05). Both muscle contraction conditions exhibited a delay followed by an exponential decrease in Pmv(o(2)). However, compared with WT, AMPK-DN demonstrated 1) prolongation of the time delay before Pmv(o(2)) began to decline (1 Hz: WT, 3.2 ± 0.5 s; AMPK-DN, 6.5 ± 0.4 s; 100 Hz: WT, 4.4 ± 1.0 s; AMPK-DN, 6.5 ± 1.4 s; P < 0.05), 2) a faster response time (i.e., time constant; 1 Hz: WT, 19.4 ± 3.9 s; AMPK-DN, 12.4 ± 2.6 s; 100 Hz: WT, 15.1 ± 2.2 s; AMPK-DN, 9.0 ± 1.7 s; P < 0.05). These findings are consistent with the presence of substantial mitochondrial and microvascular dysfunction in AMPK-DN mice, which likely slows O(2) consumption kinetics (i.e., oxidative phosphorylation response) and impairs the hyperemic response at the onset of contractions thereby sowing the seeds for exercise intolerance.  相似文献   

7.
8.
There are three isoforms of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA, which promotes mitochondrial biogenesis in skeletal muscles. Compared with PGC-1α-a mRNA, PGC-1α-b or PGC-1α-c mRNA is transcribed by a different exon 1 of the PGC-1α gene. In this study, effects of exercise intensity and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) on isoform-specific expressions of PGC-1α were investigated. All isoforms were increased in proportion to exercise intensity of treadmill running (10-30 m/min for 30 min). Preinjection of β?-adrenergic receptor (AR) antagonist (ICI 118551) inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs, but not the increase in PGC-1α-a mRNA, in response to high-intensity exercise. Although high-intensity exercise activated α2-AMP-activated protein kinase (α2-AMPK) in skeletal muscles, inactivation of α2-AMPK activity did not affect high-intensity exercise-induced mRNA expression of all PGC-1α isoforms, suggesting that activation of α2-AMPK is not mandatory for an increase in PGC-1α mRNA by high-intensity exercise. A single injection in mice of AICAR, an AMPK activator, increased mRNAs of all PGC-1α isoforms. AICAR increased blood catecholamine concentrations, and preinjection of β?-AR antagonist inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs but not the increase in PGC-1α-a mRNA. Direct exposure of epitrochlearis muscle to AICAR increased PGC-1α-a but not the -b isoform. These data indicate that exercise-induced PGC-1α expression was dependent on the intensity of exercise. Exercise or AICAR injection increased PGC-1α-b and PGC-1α-c mRNAs via β?-AR activation, whereas high-intensity exercise increased PGC-1α-a expression by a multiple mechanism in which α2-AMPK is one of the signaling pathways.  相似文献   

9.
AMP-activated protein kinase (AMPK) may regulate a number of metabolic processes including glucose transport. 5-Aminoimidazole-4-carboxamideribonucleoside (AICAR), an AMPK activator, has been used to study the potential role of AMPK in rat skeletal muscle; however, its effects on glucose transport in mouse skeletal muscle are unknown. Incubation with 2 mM AICAR increased 2-deoxyglucose transport in EDL muscle from both rats and mice by 86 and 37%, respectively. In contrast, AICAR did not increase 2-deoxyglucose transport in rat soleus muscle. However, AICAR induced a large (81%) increase in 2-deoxyglucose transport in soleus muscles obtained from mice. It is proposed that nonspecificity of the stimulation of glucose transport in mouse muscle may be due to a greater percentage of fast-twitch muscle fibers within the muscles.  相似文献   

10.
5'-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the alpha(1)- and alpha(2)-isoforms of AMPK, with a corresponding increase in the rate of 3-O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3-O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.  相似文献   

11.
12.
A single bout of exercise increases glucose uptake and fatty acid oxidation in skeletal muscle, with a corresponding activation of AMP-activated protein kinase (AMPK). While the exercise-induced increase in glucose uptake is partly due to activation of AMPK, it is unclear whether the increase of fatty acid oxidation is dependent on activation of AMPK. To examine this, transgenic mice were produced expressing a dominant-negative (DN) mutant of alpha(1)-AMPK (alpha(1)-AMPK-DN) in skeletal muscle and subjected to treadmill running. alpha(1)-AMPK-DN mice exhibited a 50% reduction in alpha(1)-AMPK activity and almost complete loss of alpha(2)-AMPK activity in skeletal muscle compared with wild-type littermates (WT). The fasting-induced decrease in respiratory quotient (RQ) ratio and reduced body weight were similar in both groups. In contrast with WT mice, alpha(1)-AMPK-DN mice could not perform high-intensity (30 m/min) treadmill exercise, although their response to low-intensity (10 m/min) treadmill exercise was not compromised. Changes in oxygen consumption and the RQ ratio during sedentary and low-intensity exercise were not different between alpha(1)-AMPK-DN and WT. Importantly, at low-intensity exercise, increased fatty acid oxidation in response to exercise in soleus (type I, slow twitch muscle) or extensor digitorum longus muscle (type II, fast twitch muscle) was not impaired in alpha(1)-AMPK-DN mice, indicating that alpha(1)-AMPK-DN mice utilize fatty acid in the same manner as WT mice during low-intensity exercise. These findings suggest that an increased alpha(2)-AMPK activity is not essential for increased skeletal muscle fatty acid oxidation during endurance exercise.  相似文献   

13.
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.  相似文献   

14.
15.
Exercise induces an increase in GLUT4 in skeletal muscle with a proportional increase in glucose transport capacity. This adaptation results in enhanced glycogen accumulation, i.e., "supercompensation," in response to carbohydrate feeding after glycogen-depleting exercise. The increase in GLUT4 reverses within 40 h after exercise in carbohydrate-fed rats. The purpose of this study was to determine whether prevention of skeletal muscle glycogen supercompensation after exercise results in maintenance of the increases in GLUT4 and the capacity for glycogen supercompensation. Rats were exercised by means of three daily bouts of swimming. GLUT4 mRNA was increased approximately 3-fold and GLUT4 protein was increased approximately 2-fold 18 h in epitrochlearis muscle after exercise. These increases in GLUT4 mRNA and protein reversed completely within 42 h after exercise in rats fed a high-carbohydrate diet. In contrast, the increases in GLUT4 protein, insulin-stimulated glucose transport, and increased capacity for glycogen supercompensation persisted unchanged for 66 h in rats fed a carbohydrate-free diet that prevented glycogen supercompensation after exercise. GLUT4 mRNA was still elevated at 42 h but had returned to baseline by 66 h after exercise in rats fed the carbohydrate-free diet. Glycogen-depleted rats fed carbohydrate 66 h after exercise underwent muscle glycogen supercompensation with concomitant reversal of the increase in GLUT4. These findings provide evidence that prevention of glycogen supercompensation after exercise results in persistence of exercise-induced increases in GLUT4 protein and enhanced capacity for glycogen supercompensation.  相似文献   

16.
Activation of AMP-activated protein kinase (AMPK) by exercise and metformin is beneficial for the treatment of type 2 diabetes. We recently found that, in cultured cells, the LKB1 tumor suppressor protein kinase activates AMPK in response to the metformin analog phenformin and the AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have also reported that LKB1 activates 11 other AMPK-related kinases. The activity of LKB1 or the AMPK-related kinases has not previously been studied in a tissue with physiological relevance to diabetes. In this study, we have investigated whether contraction, phenformin, and AICAR influence LKB1 and AMPK-related kinase activity in rat skeletal muscle. Contraction in situ, induced via sciatic nerve stimulation, significantly increased AMPKalpha2 activity and phosphorylation in multiple muscle fiber types without affecting LKB1 activity. Treatment of isolated skeletal muscle with phenformin or AICAR stimulated the phosphorylation and activation of AMPKalpha1 and AMPKalpha2 without altering LKB1 activity. Contraction, phenformin, or AICAR did not significantly increase activities or expression of the AMPK-related kinases QSK, QIK, MARK2/3, and MARK4 in skeletal muscle. The results of this study suggest that muscle contraction, phenformin, or AICAR activates AMPK by a mechanism that does not involve direct activation of LKB1. They also suggest that the effects of excercise, phenformin, and AICAR on metabolic processes in muscle may be mediated through activation of AMPK rather than activation of LKB1 or the AMPK-related kinases.  相似文献   

17.
18.
Physical activity is known to increase insulin action in skeletal muscle, and data have indicated that 5'-AMP-activated protein kinase (AMPK) is involved in the molecular mechanisms behind this beneficial effect. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) can be used as a pharmacological tool to repetitively activate AMPK, and the objective of this study was to explore whether the increase in insulin-stimulated glucose uptake after either long-term exercise or chronic AICAR administration was followed by fiber-type-specific changes in insulin signaling and/or changes in GLUT-4 expression. Wistar rats were allocated into three groups: an exercise group trained on treadmill for 5 days, an AICAR group exposed to daily subcutaneous injections of AICAR, and a sedentary control group. AMPK activity, insulin-stimulated glucose transport, insulin signaling, and GLUT-4 expression were determined in muscles characterized by different fiber type compositions. Both exercised and AICAR-injected animals displayed a fiber-type-specific increase in glucose transport with the most marked increase in muscles with a high content of type IIb fibers. This increase was accompanied by a concomitant increase in GLUT-4 expression. Insulin signaling as assessed by phosphatidylinositol 3-kinase and PKB/Akt activity was enhanced only after AICAR administration and in a non-fiber-type-specific manner. In conclusion, chronic AICAR administration and long-term exercise both improve insulin-stimulated glucose transport in skeletal muscle in a fiber-type-specific way, and this is associated with an increase in GLUT-4 content.  相似文献   

19.
Uncoupling protein 3 (UCP-3), a member of the mitochondrial transporter superfamily, is expressed primarily in skeletal muscle where it may play a role in altering metabolic function under conditions of fuel depletion caused, for example, by fasting and exercise. Here, we show that treadmill running by rats rapidly (30 min) induces skeletal muscle UCP-3 mRNA expression (sevenfold after 200 min), as do hypoxia and swimming in a comparably rapid and substantial fashion. The expression of the mitochondrial transporters, carnitine palmitoyltransferase 1 and the tricarboxylate carrier, is unaffected under these conditions. Hypoxia and exercise-mediated induction of UCP-3 mRNA result in a corresponding four- to sixfold increase in rat UCP-3 protein. We treated extensor digitorum longus (EDL) muscle with 5'-amino-4-imidazolecarboxamide ribonucleoside (AICAR), a compound that activates AMP-activated protein kinase (AMPK), an enzyme known to be stimulated during exercise and hypoxia. Incubation of rat EDL muscle in vitro for 30 min with 2 mM AICAR causes a threefold increase in UCP-3 mRNA and a 1.5-fold increase of UCP-3 protein compared with untreated muscle. These data are consistent with the notion that activation of AMPK, presumably as a result of fuel depletion, rapidly regulates UCP-3 gene expression.  相似文献   

20.
In the present study, we evaluated how a pharmacologically induced phenotype shift in dystrophic skeletal muscle would affect subsequent intracellular signaling in response to a complementary, adaptive physiological stimulus. mdx mice were treated with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR; 500 mg·kg(-1)·day(-1)) for 30 days, and then one-half of the animals were subjected to a bout of treadmill running to induce acute AMPK and p38 MAPK signaling. The mRNA levels of phenotypic modifiers, including peroxisome proliferator-activated receptor-δ (PPARδ), PPARγ coactivator-1α (PGC-1α), receptor interacting protein 140 (RIP 140), and silent information regulator two ortholog 1 (SIRT1) were assessed in skeletal muscle, as well as the expression of the protein arginine methyltransferase genes PRMT1 and CARM1. We found unique AMPK and p38 phosphorylation and expression signatures between dystrophic and healthy muscle. In dystrophic skeletal muscle, treadmill running induced PPARδ, PGC-1α, and SIRT1 mRNAs, three molecules that promote the slow, oxidative myogenic program. In the mdx animals that received the chronic AICAR treatment, running-elicited AMPK and p38 phosphorylation was attenuated compared with vehicle-treated mice. Similarly, acute stress-evoked expression of PPARδ, PGC-1α, and SIRT1 was also blunted by chronic pharmacological AMPK stimulation. Skeletal muscle PRMT1 and CARM1 protein contents were higher in mdx mice compared with wild-type littermates. The acute running-evoked induction of PRMT1 and CARM1 mRNAs was also attenuated by the AICAR treatment. Our data demonstrate that prior pharmacological conditioning is a salient determinant in how dystrophic muscle adapts to subsequent complementary, acute physiological stress stimuli. These results provide insight into possible therapeutic applications of synthetic agonists in neuromuscular diseases, such as during chronic administration to Duchenne muscular dystrophy patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号