首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of Ca(2+)-dependent Cl(-) currents (I(Cl(Ca))) increases membrane excitability in vascular smooth muscle cells. Previous studies showed that Ca(2+)-dependent phosphorylation suppresses I(Cl(Ca)) in pulmonary artery myocytes, and the aim of the present study was to determine the role of the Ca(2+)-dependent phosphatase calcineurin on chloride channel activity. Immunocytochemical and Western blot studies with isoform-specific antibodies revealed that the alpha and beta forms of the CaN catalytic subunit are expressed in PA cells but that only the alpha variant translocated to the cell periphery upon a rise in intracellular [Ca(2+)]. I(Cl(Ca)) evoked by pipette solutions containing a [Ca(2+)] set at 500 nm was considerably larger when the pipette solution included constitutively active CaN containing the alpha catalytic isoform. This stimulatory effect was lost by boiling the enzyme or by the inclusion of a specific CaN inhibitory peptide and was not shared by the inclusion of the beta form of the catalytic subunit. In the absence of constitutively active CaN, cyclosporin A, an inhibitor of CaN, suppressed I(Cl(Ca)) evoked by 500 nm Ca(2+) when the current amplitude was relatively large but was ineffective in cells with smaller currents. In perforated patch recordings, cyclosporin A consistently inhibited I(Cl(Ca)) evoked as a consequence of Ca(2+) influx through voltage-dependent calcium channels. These novel data show that in PA myocytes activation of I(Cl(Ca)) is enhanced by Ca(2+)-dependent dephosphorylation and that the regulation of this conductance is highly isoform-specific.  相似文献   

2.
3.
Regulation of (Na+ + K+)-adenosine triphosphatase (NaK-ATPase) by platelet-derived growth factor (PDGF) in cultured rat thoracic aortic smooth muscle cells (SMC) was examined. PDGF-BB enhances SMC proliferation and NaK-ATPase activity. Ouabain, an inhibitor of NaK-ATPase activity, prevents PDGF-BB-induced SMC proliferation. As shown by Western blot and immunochemiluminescence analysis, PDGF-BB also enhances 1, truncated 1, and 1 NaK-ATPase subunit levels. PDGF-AA and PDGF-AB show no effect on 1 and truncated 1 levels in slot blot analysis. Induction of NaK-ATPase subunit levels by PDGF-BB could be one of the initial events in vascular SMC proliferation.  相似文献   

4.
Induction of Fibronectin (FN) gene expression by platelet-derived growth factor (PDGF) isoforms in rat thoracic aortic smooth muscle cells (SMC) was examined. PDGF-BB enhances FN levels in SMC cultures in a time- and concentration-response fashion. PDGF-AA and PDGF-AB show no effect on FN levels. The effects of insulin and insulin-like growth factor-I (IGF-I) on PDGF-BB-induced FN levels were examined. No additivity of FN levels is observed between PDGF-BB and insulin and/or IGF-I. Experiments also show that PDGF-BB enhances FN mRNA levels, implying that acquisition of additional FN mRNA units accounts for the increase in FN levels. Induction of FN and FN mRNA levels by PDGF-BB could be one of the initial events in vascular SMC proliferation and extracellular matrix expansion, leading to atherosclerosis and hypertension.  相似文献   

5.
6.
The response of rat aortic smooth muscle cells to all three isoforms of platelet-derived growth factor (PDGF) was studied. 5,000 binding sites/cell were estimated for rPDGF-AA (Kd 0.22 nM), 45,000 for rPDGF-AB and (Kd 0.4 nM), and 31,000 for rPDGF-BB (Kd 0.29 nM). rPDGF-AB and -BB stimulated effectively [3H]thymidine incorporation, inositol 1,4,5-trisphosphate release, diacylglycerol productions, [Ca2+]i increase, and pHi changes at concentration in the range from 3 to 10 ng/ml. The extent of DNA synthesis stimulated by rPDGF-AA varied considerably, and in all cases higher concentrations than 10 ng/ml were required. rPDGF-AA did not stimulate inositol-1,4,5-trisphosphate release, [Ca2+]i increase or pHi changes but induced the production of diacylglycerol, although with a different kinetic compared with that observed with rPDGF-AB or -BB. Apparently rPDGF-AA acts via a different mechanism, generating diacylglycerol without the release of inositol-1,4,5-trisphosphate.  相似文献   

7.
Proliferation of smooth muscle cells (SMC) in the arterial intima of man and experimental animals is important in the pathogenesis of atherosclerosis. Vascular SMC proliferation in vitro is stimulated by a number of agents, including the potent protein mitogen, platelet-derived growth factor (PDGF). Recent studies on rat arterial SMC indicate that these cells may, under certain circumstances, synthesize PDGF protein mitogens, suggesting that the regulation of SMC proliferation in vivo may have an autocrine or paracrine component. In this study we demonstrate that cultured nonhuman primate (baboon) aortic SMC transcribe both the PDGF-A and PDGF-B genes but do not secrete detectable mitogenic activity characteristic of native PDGF. The absence of this activity was not due to the presence in the cell conditioned medium of factors inhibitory for PDGF-mediated mitogenic activity. Metabolic labeling of the cells and immunoprecipitation with specific antibodies to human PDGF did not detect a dimeric (30 kDa) PDGF protein in either the intracellular or extracellular compartments, but instead identified PDGF-related proteins of molecular weight 12 kDa and 100 kDa. These data suggest the presence in vascular SMC of a mechanism regulating the translation of PDGF mRNA that may play an important role in the control of SMC proliferation in vivo.  相似文献   

8.
J Nakao  Y Koshihara  H Ito  S Murota  W C Chang 《Life sciences》1985,37(15):1435-1442
Platelet-derived growth factor (PDGF) has a chemotactic effect on smooth muscle cells, which is inhibited by lipoxygenase inhibitor caffeic acid. In order to study the role of endogenous lipoxygenase products of arachidonic acid on the chemotactic action of PDGF, effects of PDGF on the lipoxygenase pathway in smooth muscle cells were examined. Lipoxygenase products were analyzed by high-performance liquid chromatography. 15-, 5- and 12-lipoxygenase activities, in order of magnitude, were found in smooth muscle cell homogenate. However, when the lipoxygenase products were analyzed using intact cells prelabelled with [14C]arachidonic acid, only 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE) was found to be produced endogenously. In addition, 12-HETE was not released into the medium. Treatment of the cells with PDGF increased the endogenous production of 12-HETE. The amounts of intracellular 12-HETE in PDGF-treated cells were 126, 132 and 146% at 1, 3, and 10 hr's after the initiation of PDGF treatment, respectively, when control value at each time point was considered as 100%. Caffeic acid (10(-4) M) completely inhibited the PDGF effect on 12-HETE production. However, PDGF treatment did not significantly alter the 12-lipoxygenase activity. These results suggest that the stimulatory effect of PDGF on 12-HETE production was not mediated by the activation of 12-lipoxygenase activity. Since 12-HETE itself is a potent chemoattractant for smooth muscle cells, the present dat strongly suggest that 12-HETE could be an important intracellular mediator of the chemotactic action of PDGF on aortic smooth muscle cells.  相似文献   

9.
10.
Previous studies have demonstrated that rat aortic smooth muscle cells (SMC) show marked changes in smooth muscle (SM) alpha-actin content and fractional synthesis as a function of cell density and growth (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352; Blank, R., Thompson, M. M., and Owens, G. K. (1988) J. Cell Biol. 107, 299-306). Results of this study show that, although there is a 6-fold increase in SM alpha-actin content in postconfluent density arrested cultures as compared to proliferating subconfluent cultures, SM alpha-actin mRNA levels are not different between these cells. This suggests that the SM alpha-actin gene is constitutively active under both of these conditions and that accumulation of SM alpha-actin in postconfluent cells is due to translational and/or post-translational controls. The relationship between growth and cytodifferentiation was further explored by examining the effects of platelet-derived growth factor (PDGF)- or serum-induced growth on actin expression in postconfluent, quiescent cultures maintained in a defined serum-free media. Although both factors have been shown to stimulate proliferation and decrease fractional SM alpha-actin synthesis (Blank et al., 1988), their effects on actin mRNA levels were quite different. PDGF was found to induce a dramatic drop in SM alpha-actin steady state mRNA level but had no effect on nonmuscle beta-actin mRNA level. In contrast, serum stimulation was shown to increase nonmuscle beta-actin mRNA level, whereas SM alpha-actin mRNA level remained constant. Taken together these results indicate that PDGF is a specific and potent repressor of SM alpha-actin expression in vascular SMC and implicate a possible developmental role for PDGF in control of SMC differentiation. In addition, the observation that the level of SM alpha-actin mRNA is unaltered in serum-stimulated cells indicates that an absolute decrease in SM alpha-actin mRNA is not obligatory for cell cycle entrance.  相似文献   

11.
The effect of atrial natriuretic factor (Isoleucine-ANF 101-126) on basal and platelet-derived growth factor (PDGF)-stimulated proliferation of rat aortic vascular smooth muscle cells (VSMC) was assessed by microscopy and measurement of incorporation of tritiated thymidine by cells cultured with or without addition of PDGF in the presence of various concentrations (10(-8)-10(-6) molar) of ANF. ANF had little effect on proliferation of cells grown in media supplemented with 2% fetal calf serum (FCS) alone but exhibited clear dose-related inhibition of PDGF-stimulated thymidine incorporation.  相似文献   

12.
Infection by human cytomegalovirus (HCMV) is associated with the development of vascular diseases and may cause severe brain damage in infected fetuses. Platelet-derived growth factor receptors alpha and beta (PDGFR-α and -β) control important cellular processes associated with atherosclerosis and fetal development. In the present investigation, our goal was to determine whether infection by HCMV can influence the expression of PDGFR-α and -β in human smooth muscle cells (SMCs). In connection with HCMV infection in vitro the levels of PDGFR-α and -β at the cell surface and in the total cellular protein of SMCs were reduced in parallel with decreases in the levels of the corresponding mRNAs. These effects were dependent on immediate-early (IE) or early (E) HCMV gene products, since inhibition of late genes did not prevent HCMV from affecting the expression of PDGFR-α and -β. The downregulation of PDGFR caused by HCMV was dose dependent. Furthermore, confocal microscopy revealed that the localization of PDGFR-β was altered in HCMV-infected cells, in which this protein colocalized with proteins associated with endosomes (Rab4 and -5) and lysosomes (Lamp1 and -2), indicating entrance into pathways for protein degradation. Altogether these observations indicate that an IE and/or E HCMV protein(s) downregulates the expression of PDGFR-α and -β in SMCs. This phenomenon may disrupt cellular processes of importance in connection with cellular differentiation, migration, and/or proliferation. These observations may explain why congenital infection with HCMV can cause fetal brain damage.  相似文献   

13.
We have reexamined the role of endogenous thrombospondin-1 (TSP1) in growth and motility of vascular smooth muscle cells (SMCs). Based on the ability of aortic-derived SMCs isolated from TSP1 null mice and grown in the absence of exogenous TSP1 to grow at comparable rates and to a slightly higher density than equivalent cells from wild-type mice, TSP1 is not necessary for their growth. Low concentrations of exogenous TSP1 stimulate growth of TSP1 null SMCs, but higher doses of TSP1 or its C-terminal domain are inhibitory. However, SMCs from TSP1 null mice are selectively deficient in chemotactic and proliferative responses to platelet-derived growth factor and in outgrowth in three-dimensional cultures. Recombinant portions of the N- and C-terminal domains of TSP1 stimulate SMC chemotaxis through different integrin receptors. Based on these data, the relative deficiency in SMC outgrowth during an ex vivo angiogenic response of muscle tissue from TSP1 null mice is probably due to restriction of platelet-derived growth factor dependent SMC migration and/or proliferation.  相似文献   

14.
Pinocytosis was measured in monkey aortic smooth muscle cells (SMC), bovine aortic endothelial cells, and Swiss 3T3 cells in culture as cellular uptake of [U-(14)C]sucrose and horseradish peroxidase (HRP) from the tissue culture medium. Monkey arterial SMC and Swiss 3T3 cells were maintained in a quiescent state of growth at low cells density in medium containing 5 percent monkey plasma-derived serum (PDS). Replacement of PDS with 5 percent monkey whole blood serum (WBS) from the same donor, or addition to PDS of partially purified platelet-derived growth factor(s) (PF), resulted in a marked stimulation of pinocytosis as well as of cellular proliferation. In SMC, enhancement of the rate of pinocytosis occurred 4-6 h after exposure to WBS or PF, and the rate was up to twofold higher than the rate in medium containing PDS. In contrast, [(3)H]thymidine uptake by SMC did not increase until 12-16 h after exposure to PF. In endothelial cells the presence of PF or WBS did not enhance either the rate of pinocytosis or the rate of proliferation over that in PDS. Thus, endothelial cells did not become quiescent at subconfluent densities in PDS but maintained rates of proliferation and pinocytosis that were equivalent to those in WBS. By autoradiography, the fraction of labeled nuclei in SMC cultures 24 h after change of medium increased from 0.061 +/- 0.004 in quiescent cultures to 0.313 +/- 0.028 after exposure to WBS or PF. In contrast, labeling indices of endothelial cells were similar for cultures grown in PDS, WBS, or PF at any single time point after change of medium. These findings suggest that the rate of pinocytosis maybe be coupled in some fashion to growth regulation, which may be mediated in part by specific growth factors, such as that derived from the thrombocyte.  相似文献   

15.
Summary During in vitro culture arterial smooth muscle cells of adult rats are able to produce a platelet-derived growth factor (PDGF)-like protein and to promote their own growth in an autocrine manner. Here, this process has been studied using suramin, a polyanionic drug that has been reported to interfere with the cellular binding of several growth factors. Our results indicate that suramin speeds up the transition of the cells from a contractile to a synthetic phenotype early in primary culture. It inhibits the binding of PDGF to the cells, displaces PDGF bound to the cell surface, and slows down the degradation of PDGF internalized by the cells. It reduces the specific activities of the lysosomal enzymes acid phosphatase, -N-ace-tylglucosaminidase and -glucuronidase, and gives rise to an accumulation of lysosomes with myelin-like inlcusions. It blocks PDGF- and serum-induced DNA synthesis and cellular proliferation in secondary cultures, but lacks a distinct inhibitory effect on DNA synthesis in primary cultures under serum-free conditions. The results suggest that the PDGF-like protein produced by the smooth muscle cells under the latter conditions may bind to its receptor and exert its autocrine effect intracellularly, without prior release into the pericellular space.  相似文献   

16.
The role of platelet-derived growth factor (PDGF) in the control of smooth muscle cell (SMC) differentiation was explored in vitro by examining its effects on expression of the smooth muscle (SM) specific contractile protein SM alpha actin in cultured rat aortic SMC. Quiescent, postconfluent SMC express maximal levels of alpha actin and responded to human platelet-derived growth factor (partially purified from platelets) by entering the cell cycle and undergoing approximately one synchronous round of DNA synthesis. Concomitantly, these cultures exhibited a marked reduction in alpha actin synthesis. Chronic treatment with PDGF (72 hours at 8 or 12 hour intervals) was associated with a transient increase in thymidine labeling index and a decrease in alpha actin expression. Interestingly, between 48 and 72 hours following initial treatment, thymidine labeling indices returned to near control levels while SM alpha actin expression remained depressed. This effect was reversible; fractional alpha actin synthesis increased immediately after PDGF removal. When subsequently stimulated with 10% fetal bovine serum (FBS), cells chronically pretreated with PDGF entered S phase approximately 4 hours earlier than cells pretreated with PDGF vehicle, consistent with the idea that the maintained suppression of alpha actin synthesis in SMC subjected to chronic PDGF treatment was associated with partial cell cycle transit. Chronic treatment with highly purified recombinant PDGF-BB elicited similar effects on alpha actin synthesis and partial cell cycle transit. Flow cytometric analysis of chronic PDGF-treated SMC demonstrated a 25% increase in forward angle light scatter, an index of cell size. These data implicate a possible role for PDGF in regulation of SMC differentiation and suggest a potentially important role for this mitogen in the phenotypic modulation accompanying SMC growth and in mediation of the cellular hypertrophy associated with cell cycle progression.  相似文献   

17.
Changes on collagen synthetic activity of cultured arterial smooth muscle cells of rabbits induced with purified platelet-derived growth factor (PDGF) were examined. PDGF treatment (final concentration was 5 units/ml) decreased the total collagen synthesis per cell, while the rate of collagen synthesis against total protein synthesis was raised by PDGF. Type analysis of collagen revealed substantial reduction of type IV collagen and relative increase of type V collagen in the PDGF-treated cells. By immunofluorescence study using anti-type IV collagen antibody, the lacework fluorescence was decreased with PDGF supplement. These findings indicate that PDGF induces the decrease of type IV collagen synthesis with the simultaneous diminution of basement membrane formation probably in association with phenotypic modulation of smooth muscle cells.  相似文献   

18.
In attempts to determine the mechanism of proliferation of arterial smooth muscle cells (SMC) in intimal atheromatous lesions, autocrine secretion of growth factors by SMC has recently received much attention. Here we report a new growth factor named smooth muscle cell derived growth factor (SDGF). Cultured rabbit medial SMC secreted SDGF for 1 week during their incubation in serum-free media only after at least 4 passages. SDGF differed from platelet derived growth factor (PDGF) physicochemically, immunologically, and biologically. The properties of SDGF also seemed different from those of other known growth factors that stimulate the proliferation of mesenchymal cells.  相似文献   

19.
Recent data suggest that uric acid is generated locally in the vessel wall by the action of xanthine oxidase. This enzyme, activated during ischemia/reperfusion by proteolytic conversion of xanthine dehydrogenase, catalyzes the oxidation of xanthine, thereby generating free radicals and uric acid. Because of the potential role of ischemia/reperfusion in vascular disease, we studied the effects of uric acid on rat aortic vascular smooth muscle cell (VSMC) growth. Uric acid stimulated VSMC DNA synthesis, as measured by [3H]thymidine incorporation, in a concentration-dependent manner with half-maximal activity at 150 microM. Maximal induction of DNA synthesis by uric acid (250 microM) was approximately 70% of 10% calf serum and equal to 10 ng/ml platelet-derived growth factor (PDGF) AB or 20 ng/ml fibroblast growth factor. Neither uric acid precursors (xanthine and hypoxanthine) nor antioxidants (ascorbic acid, glutathione, and alpha-tocopherol) were mitogenic for VSMC. Uric acid was mitogenic for VSMC but not for fibroblasts or renal epithelial cells. The time course for uric acid stimulation of VSMC growth was slower than serum, suggesting induction of an autocrine growth mechanism. Exposure of quiescent VSMC to uric acid stimulated accumulation of PDGF A-chain mRNA (greater than 5-fold at 8 h) and secretion of PDGF-like material in conditioned medium (greater than 10-fold at 24 h). Uric acid-induced [3H]thymidine incorporation was markedly inhibited by incubation with anti-PDGF A-chain polyclonal antibodies. Thus uric acid stimulates VSMC growth via an autocrine mechanism involving PDGF A-chain. These findings suggest that generation of uric acid during ischemia/reperfusion contributes to atherogenesis and intimal proliferation following arterial injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号