首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The sequence of the synthesis and transport of the organic matrix of spicules has been elucidated in the gorgonian Leptogorgia virgulata by use of 3H-aspartic acid as the tracer in electron-microscopic autoradiography. The entire process of matrix synthesis and transport takes approximately 2 h. It seems that the protein moiety of the organic matrix is synthesized in the RER prior to 5 min following the initial 10 min incubation in the tracer. At the 5 min chase the label is moving from the RER to the Golgi complexes where the carbohydrate moiety of the matrix is presumed to be synthesized. At the 5 to 15 min chases the label is transported out of the Golgi complexes via Golgi vesicles. This phase continues for 30 min. From 60 to 120 min the 3H-aspartic acid moves to the spicules. After 120 min the majority of the label has moved into the spicules. Silver grain counts over both multivesicular and electron-dense bodies remain at relatively low and constant levels over 4 h indicating that neither organelle is involved in the synthesis and transport of the organic matrix.Contribution No 512; Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina, Columbia, South Carolina 29208, USA  相似文献   

2.
Summary Ultrastructural examination of original and regenerated branch tips of the gorgonianLeptogorgia virgulata reveals that spicule formation begins with the aggregation of scleroblasts in the mesoglea. Calcite crystal deposition occurs within a Golgi vacuole containing organic matrix. Vacuole size increases while matrix incorporation and subsequent crystal growth continue, filling the vacuole. At approximately this time, the scleroblasts dissociate and wart formation begins. Further spicule growth stretches the cell into a thin envelope. Fusion of vacuole and plasma membrane followed by breach formation during spicule growth, as well as scleroblast atrophy or migration from mature spicules, result in the transition of the spicule from the intracellular to the extracellular environment. The results also reveal aborted spicules and digestive bodies, implying possible relationships among calcification, detoxification, and waste management.Contribution No 436, Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina, Columbia, South Carolina, 29208, USA  相似文献   

3.
Many of the invertebrates possess calcium carbonate spicules.This paper is a review of the formation of these structuresin the Porifera, Coelenterata, Platyhelminthes, Mollusca, Echinodermataand Ascidiacea. Mature spicules appear to be extracellular structures.Sponge spicules initiate intercellularly then become extracellular.Alcyonarian, turbellarian, echinoid and ascidian spicule depositionbegins intracellularly and then becomes extracellular. The continuationof growth in the extracellular environment has not been documentedexcept for the echinoids. Placophoran spicules initiate andremain as extracellular structures. Early spicule growth seemsto occur from or within a single cell. However, cell aggregationand/or neighboring cells appear to be important to the processof spicule formation. The spicule forming cells, in general,are found in a collagenous medium which may be associated withspicule growth. The organic matrix from the spicules of the gorgonian Leptogorgiavirgulata is a glycoprotein. Autoradiography reveals that thismatrix is apparently synthesized in the rough endoplasmic reticulumand Golgi complexes and then transported to the spicule formingvacuole via Golgi vesicles. To gain information about the entryand transport of calcium ions, the effects of ouabain and vanadateon calcium uptake were examined. Ouabain had no effect on calciumuptake. Vanadate treatment increased the uptake of calcium inscleroblasts and epithelial tissue and decreased its uptakein spicules. This may suggest that vanadate sensitive ATPasesare involved in the pumping of calcium out of scleroblasts,out of epithelial cells into the mesoglea, and into scleroblastorganelles. Autoradiography using 45Ca indicates that the majorityof these ions initially accumulate in the branch axis. The labelmoves through the axial epithelium to the mesoglea and reachesthe spiculeforming vacuoles in the scleroblasts via dense bodies  相似文献   

4.
Summary Scleroblasts were separated from fragmented tissue of growing tips ofLeptogorgia virgulata and cultured using a modification of the technique of Rannou. Replacement of fetal bovine serum with horse serum seemed to increase scleroblast viability. Cell adhesion occurred from 14 to 43 d. Cultured scleroblasts demonstrated cell aggregation, spicule formation, and extrusion of spicules into the external medium. Cells showing spicules in the process of being extruded appeared on the average after 24 d of culture. Variability among cultures was marked with respect to both division and spicule formation. Healthy cultures were maintained for more than 4 mo. This work was supported by National Science Foundation grants PCM8201389 and DCB8502698. This is contribution No. 674 of Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina.  相似文献   

5.
The gorgonian coral Leptogorgia virgulata contains thyroxine, or a thyroxine-like substance, referred to here as G-T4. The G-T4 levels were significantly higher in colonies collected in the summer vs. winter months. Using immunocytochemical techniques, G-T4 was localized in the axis, polyp epithelium, and within the electron dense bodies of scleroblasts (spicule-forming cells), as well as on the periphery of spicules. G-T4 was also localized in the mesoglea between closely adjacent scleroblasts. The effects of exogenous T4 on the uptake of Ca45 was determined in spicule, tissue and axis fractions of L. virgulata. The uptake of Ca45 increased in T4 treated spicules but decreased in the tissue fraction for all time periods tested. The uptake of Ca45 into axes was not affected by exogenous T4 until day 10 of the study. These data suggest that G-T4 may function in the process of spicule formation. 1,25-dihydroxyvitamin D apparently is synthesized via ultraviolet radiation. Colonies deprived of ultraviolet radiation had significantly more ‘irregular’ spicules than colonies maintained in ultraviolet radiation. Exposure to sunlight therefore may be associated with the process of normal spicule formation.  相似文献   

6.
The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS–PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30–60 nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules.  相似文献   

7.
The gorgonian coral Leptogorgia virgulata contains thyroxine, or a thyroxine-like substance, referred to here as G-T(4). The G-T(4) levels were significantly higher in colonies collected in the summer vs. winter months. Using immunocytochemical techniques, G-T(4) was localized in the axis, polyp epithelium, and within the electron dense bodies of scleroblasts (spicule-forming cells), as well as on the periphery of spicules. G-T(4) was also localized in the mesoglea between closely adjacent scleroblasts. The effects of exogenous T(4) on the uptake of Ca(45) was determined in spicule, tissue and axis fractions of L. virgulata. The uptake of Ca(45) increased in T(4) treated spicules but decreased in the tissue fraction for all time periods tested. The uptake of Ca(45) into axes was not affected by exogenous T(4) until day 10 of the study. These data suggest that G-T(4) may function in the process of spicule formation. 1,25-dihydroxyvitamin D apparently is synthesized via ultraviolet radiation. Colonies deprived of ultraviolet radiation had significantly more 'irregular' spicules than colonies maintained in ultraviolet radiation. Exposure to sunlight therefore may be associated with the process of normal spicule formation.  相似文献   

8.
1.  With Helix pomatia intracerebral injections of ferritin were carried out (maximal incubation time: 45 min). First, the marker spreads with time via the extracellular space throughout the cerebral ganglia and, secondly, is transported out of the ganglia. Electron microscopical studies showed that all glial cell types take up great amounts of ferritin by endocytosis. The plasmatic glial cells at the periphery incorporate more of the marker than the filamentous glial cells in the centre. No uptake of ferritin by neurons or axons was observed. In vitro studies proved that ferritin can penetrate from the connective tissue capsule into the ganglia only after disruption of the neural lamella and damaging of the peripheral glial processes.
2.  3H-glutamate, a putative transmitter of the CNS of Helix pomatia, was injected into the hemocoel of active snails (incubation times: 15min, l h, 6h, 3d). Light microscopical evaluation of radioautographs showed that great quantities of the tracer penetrate into the ganglia. The bulk of it is taken up by glial cells, whereas the neurons exhibit only small amounts of the tracer.
The studies with ferritin as well as those with 3H-glutamate indicate that the glial cells of the cerebral ganglia of Helix pomatia act as a hemolymph-neuron barrier. A dominant role of the plasmatic glial cells according to these processes is discussed.  相似文献   

9.
The organic matrix of spicules of the alcyonarian coral, Lobophytum crassum, was studied to investigate its molecular characteristics and functional properties. The shape of the spicules was identified using scanning electron microscopy. The soluble organic matrix comprised 0.03% of the spicule weight. The SDS-PAGE analysis of the preparation showed four protein bands with apparent molecular weights of 37, 48, 67 and 102 kDa. The 67- and 102-kDa proteins appeared to be calcium binding proteins, detected as radioactive bands by 45Ca autoradiography. The 67-kDa protein appears to be glycosylated. The N-terminal amino acid sequence of the 67 kDa was determined; 7 of 20 residues were acidic. A database search for homologous proteins did not give a clear indication of the function of the 67-kDa protein. The isolated organic matrix possesses carbonic anhydrase activity which functions in calcium carbonate crystal formation, indicating that organic matrix is not only structural protein but also a catalyst. An interpretation of these results is that the spicule of alcyonarian corals has a proteinaceous organic matrix related to the calcification process.  相似文献   

10.
The partitioning of nitrogen deposition among soil, litter, below- and above-ground biomass of trees and understory vegetation was investigated in a 15-year-old Picea abies (L.) Karst. plantation in the Fichtelgebirge, Germany, by labeling with 62 mg of15N tracer per square meter in March 1991. Ammonium and nitrate depositions were simulated on five plots each, by labeling with either15N-NH4 + or15N-NO3 , and the15N pulse was followed during two successive growing seasons (1991 and 1992). Total recovery rates of the15N tracer in the entire stand ranged between 93 and 102% for both nitrogen forms in 1991, and 82% in June 1992. 5 N ratios increased rapidly in all compartments of the ecosystem. Roots and soils (to 65 cm depth) showed significant15N enrichments for both15N-treatments compared to reference plots. Newly grown spruce tissues were more enriched than older ones, but the most enriched 15N values were found in the understory vegetation. Although spruce trees were a much larger pool (1860 g biomass/m2) than understory vegetation (Vaccinium myrtillus 333 g/m2, Calluna vulgaris 142 g/m2, Deschampsia flexuosa 22 g/m2), the ericaceous shrubs and the perennial grass were a much greater sink for the15N label. Eight months after labeling, 9% of the ammonium and 15% of the nitrate label were found in the understory. P.abies retained only 3% of the15N-ammonium and 7% of the15N-nitrate. The main sink for both15N tracers was the soil, where 87% of the ammonium and 79% of the nitrate tracer were found. The organic soil horizon (5-0 cm depth) contained 63% of the15N-ammonium and 46% of the15N -nitrate suggesting strong immobilization by microorganisms of both N forms. Eight months after tracer application, about 16% of both15N-tracers was found below 25 cm soil depth. This 16% corresponds well to a 20% decrease in the recovery of both15N tracers after 15 months and indicates a total loss out of the ecosystem. Highly enriched 15N values were found in fruit bodies of fungi growing in reference lots (no15N addition), although soils did not show increased 15N ratios. No transfer of15N-tracer between fungi and spruce or understory vegetation was apparent yet.  相似文献   

11.
A number of plants were tested for their ability to bind ethylene and the number of binding sites present in each was calculated. Primary leaves of laboratory-grown beans (Phaseolus vulgaris) bound 140 dpm/g fwt (1794 dpm/g dry wt) when exposed to 1.0 Ci/1 of [14C]ethylene (110 ci/mol). Phytotron-grown leaves were less succulent but only bound 90 dpm/g fwt (1046 dpm/g dry wt). Bean roots bound 30 dpm/g fwt. Citrus and Ligustrum bound 207 and 240 dpm/g fwt, respectively. The time required to achieve equilibrium of leaves with the gas phase was 15 min for bean, 30 min for Citrus, and 30–60 min for Ligustrum. The time for 1/2 of the bound ethylene to diffuse out of the leaves was 20 min for bean, 10 min for Citrus, and 30 min for Ligustrum. The amount of ethylene needed to occupy 1/2 of the binding sites was obtained from Scatchard plots. This value (Kd) was 0.2 l/1 for bean, 0.15 for Citrus, and 0.31 for Ligustrum. The quantity of binding sites in the tissues was 2.0×10-9 mol of binding sites/kg tissue for bean leaves, 5.7×10-9 for Citrus leaves, and 6.8×10-9 for Ligustrum. Pretreatment with indoleacetic acid (IAA), ehtylene, and cycloheximide (1 mg/1) had little effect on the level of ethylene-binding sites in Citrus.Contribution from the Department of Biochemistry, School of Agriculture and Life Sciences and School of Physical and Mathematical Sciences, North Carolina State University. Paper No. 8445 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7601.North Carolina-Israel exchange Scholar for 1981 at the Department of Biochemistry, North Carolina State University Raleigh, North Carolina, USA  相似文献   

12.
As gastrulation proceeds during sea urchin embryogenesis, primary mesenchyme cells (PMCs) fuse to form syncytial cables, within which calcium is deposited as CaCO3, and a pair of spicules is formed. Earlier studies suggested that calcium, previously sequestered by primary mesenchyme cells, is secreted and incorporated into growing spicules. We examined the effects of gadolinium ion (Gd3+), a Ca2+ channel blocker, on spicule formation. Gd3+ did not lead to a retardation of embryogenesis prior to the initiation of gastrulation and did not inhibit the ingression of PMCs from the blastula wall or their migration along the inner blastocoel surface. However, when embryos were raised in seawater containing submicromolar to a few micromolar Gd3+, of which levels are considered to be insufficient to block Ca2+ channels, a pair of triradiate spicules was formed asymmetrically. At 1–3 μmol/L Gd3+, many embryos formed only one spicule on either the left or right side, or embryos formed a very small second spicule. Induction of the spicule abnormality required the presence of Gd3+ specifically during late blastula stage prior to spicule formation. An accumulation or adsorption of Gd3+ was not detected anywhere in the embryos by X‐ray microanalysis, which suggests that Ca2+ channels were not inhibited. These results suggest that Gd3+ exerts an inhibitory effect on spicule formation through a mechanism that does not involve inhibition of Ca2+ channels.  相似文献   

13.
Jones  P.  Bachelard  H. S. 《Neurochemical research》1999,24(11):1327-1331
The transfer of label from 15N-alanine and 15N-glutamate into amino acids in incubated brain slices has been followed using gas chromatography/mass spectrometry (GC/MS). 15N from alanine appeared in both amino and amide groups of glutamine more rapidly than into aspartate, glutamate and GABA, which were all labeled at similar rates. Maximum labelling of approx. 50% enrichment of these three metabolites was achieved in 3 hr. The 15N present in doubly-labeled glutamine exceeded that in the singly-labelled after 30 min. 15N from glutamate was rapidly transferred to aspartate and to alanine, with slower incorporation into glutamine and GABA. As was seen with labeling from alanine, doubly-labeled glutamine was higher than the singly-labeled species, also reaching some 50% enrichment in 3 hr. Depolarisation with 40 mM extracellular K+ caused a considerable reversal of the ratio of doubly- to singly-labeled glutamine species from both alanine and glutamate. The results are discussed in terms of the effects of depolarization on the glutamate/glutamine cycle.  相似文献   

14.
Summary Chum salmon (Oncorhynchus keta) stanniocalcin was purified, partially identified and tested for bioactivity in an assay on the intestinal calcium uptake in a marine teleost (Gadus morhua). Basic ethanol extraction, ion exchange chromatography, gel filtration and reverse-phase high-performance liquid chromatography resulted in the isolation of a homogenous glycoprotein that appears as a 46-kDa product under non-reducing conditions and as a 23-kDa product under reducing conditions after sodium dodecylsulphate-polyacrylamide gel electrophoresis. The glycoprotein is likely to be a homodimer composed of two subunits of 23 kDa each. Further characterization indicates homology to Australian eel, sockeye salmon, coho salmon and rainbow trout stanniocalcin, and the glycoprotein is thus concluded to be stanniocalcin. Stanniocalcin-like immunoreactivity was demonstrated in the corpuscles of Stannius of the Atlantic cod, with a specific antiserum raised against purified chum salmon stanniocalcin. The physiological importance and the biological activity of chum salmon stanniocalcin was tested by evaluating its effect on intestinal calcium uptake by the Atlantic cod in vitro. The intestine was perfused, both vascularly and through the intestinal lumen, and the calcium mucosa-to-serosa flux was measured using 45Ca2+ as a tracer. Stanniocalcin decreased the intestinal calcium uptake in a dose-related manner by 13.5% and 22.4% at doses of 2.2 and 10.9 nM stanniocalcin, respectively. The results establish the intestine as a target organ for stanniocalcin in marine teleosts.Abbreviations BIS balanced intestinal solution - CS corpuscles of Stannius - dpm disintegrations per minute - FW freshwater - J in Ca influx of calcium across the intestinal mucosa - MW molecular weight - NRS normal rabbit serum - PBS phosphate buffered saline - PBST phosphate buffered saline containing 0.05% Tween-20 - PITC phenyl isothiocyanate - rp-HPLC reverse phase - SW seawater - STC phenyl isothiocyanate - rp-HPLC reverse phase - SW seawater - STC stanniocalcin - TFA Trifluoroacetic acid - Tris Tris(hydroxymethyl) aminomethan - V volume per fraction  相似文献   

15.
A. Limami  T. Lamaze 《Plant and Soil》1991,138(1):115-121
The lower part (4 cm) of the witloof chicory tap-root (15 cm) was immersed in a complete nutrient solution for 21 days, in the darkness at 18°C and at high RH. This process of forcing which leads to the emergence of an etiolated bud (chicon) was associated with a decrease in root dry weight. Although the amount of calcium in the root and the root cationic exchange capacity remained constant during forcing, the net uptake of calcium, negligible at the onset of forcing, progressively increased to a rate after ten days of 45 mol day–1. Absorption of 45Ca remained at a constant high rate, while the initially low upward migration of 45Ca within the root and the chicon accelerated markedly. This upward migration was associated with a progressive decline in the release of newly absorbed 45Ca. The data support the hypothesis that calcium acquisition by witloof chicory root is predominantly determined by calcium efflux. As the forcing progressed, the influx remained almost constant while a large decrease in the efflux led to a net uptake of calcium. Upward translocation was probably linked to the formation of new negative exchange sites within the growing chicon. The hypothesis that calcium movement occurred along a preferential pathway (xylem vessels) or involved a mass movement through the root is discussed.  相似文献   

16.
Three Ektaphelenchus species with unusual spicules are redescribed. Ektaphelenchus obtusus and E. riograndensis are redescribed from newly discovered material in the collection of the USDA Forest Service RMRS. Lectotype slides are designated for both species. Ektaphelenchus obtusus is characterized by a set-off head, lips of unequal size, double rows of oocytes and spermatocytes, and a hooked spicule terminus. Ektaphelenchus riograndensis is distinguished by a rounded head with six equal lips, and spicules with a large, rounded apex, and recurved terminus. A bursa and gubernaculum are absent in both species. Ektaphelenchus scolyti is redescribed from type material deposited in the collection of Rothamsted Experimental Station. It is characterized by a well set-off head, double rows of oocytes and spermatocytes, and spicules with a hooked terminus. A bursa and gubernaculum are absent.  相似文献   

17.
The solitary stolidobranch ascidian Herdmania momus contains numerous calcium carbonate spicules in its tunic and body tissues. The slender body spicules form inside complex sheaths in the body wall and branchial basket, where they remain for the life of the animal. The much smaller tunic spicules form inside the tunic blood vessels and then migrate to the tunic surface, where they become anchored by their spiny base. This paper is an ultrastructural investigation of the formation of the body spicules; the tunic spicules, which apparently form quite differently, will be the focus of a future study. The body spicules are composed of rows of closely packed acicular spines which form completely extracellularly. The spine tips are covered by flattened, highly pseudopodial sclerocytes bound together by tightly interdigitating cell processes. The basal regions of contiguous spines are covered by very thin sclerocyte cell processes. An organic matrix is present within the spines; its exact nature is not clear. A very dense extracellular inter-spine matrix is located between the spine tips and the contiguous basal regions. Presclerocytes within the sheaths between the spicules are probably responsible for formation of the extracellular structures of the sheaths. The presclerocytes appear to aggregate and transform into sclerocytes at the apical end of the spicule. New spines are added at the apical end of the spicule as well as between larger spines. Comparisons are made between body spicule formation in H. momus and skeletogenesis in echinoids.  相似文献   

18.
The siliceous skeleton of demosponges is constructed of spicules. We have studied the formation of spicules in primmorphs from Suberites domuncula. Scanning electron microscopy and transmission electron-microscopical (TEM) analyses have revealed, in the center of the spicules, an axial canal that is 0.3–1.6 m wide and filled with an axial filament. This filament is composed of the enzyme silicatein, which synthesizes the spicules. TEM analysis has shown that spicule formation starts intracellularly and ends extracellularly in the mesohyl. At the initial stage, the axial canal is composed only of silicatein, whereas membranous structures and fibrils (10–15 nm in width) can later also be identified, suggesting that intracellular components protrude into the axial canal. Antibodies against silicatein have been applied for Western blotting; intracellularly, silicatein is processed to the mature form (24 kDa), whereas the pro-enzyme with the propeptide (33 kDa) is detected extracellularly. Silicatein undergoes phosphorylation at five sites. Immunohistological analysis has shown that silicatein exists in the axial canal (axial filament) and on the surface of the spicules, suggesting that they grow by apposition. Finally, we have demonstrated that the enzymic reaction of silicatein is inhibited by anti-silicatein antibodies. These data provide, for the first time, a comprehensive outline of spicule formation.This work was supported by grants from the European Commission (SILIBIOTEC), the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin) and the International Human Frontier Science Program.  相似文献   

19.
Dobretsov  Sergey  Wahl  Martin 《Hydrobiologia》2001,464(1-3):27-35
We adapted the chloroform fumigation method to determine microbial nitrogen (N) and microbial incorporation of 15N on three common substrates [leaves, wood and fine benthic organic matter (FBOM)] in three forest streams. We compared microbial N and 15N content of samples collected during a 6-week 15N–NH4 tracer addition in each stream. The 15N was added during late autumn to Upper Ball Creek, a second-order stream at the Coweeta Hydrologic Lab, North Carolina, U.S.A.; during spring to Walker Branch, a first-order stream on DOE's Oak Ridge National Environmental Research Park, Tennessee; and during summer to Bear Brook, a first-order stream in the Hubbard Brook Experimental Forest, New Hampshire. FBOM was the largest component of organic matter and N standing stock in all streams. Microbial N represented the highest proportion of total N in leaves and least in FBOM in Walker Branch and Bear Brook. In Upper Ball Creek, the proportion of microbial N was higher in FBOM than in used biofilm or on leaves. Standing stock of microbial N on leaves and in FBOM ranged from 37 mg N m–2 in Bear Brook to 301 mg N m–2 in Walker Branch. Percent of detrital N in living microbial cells was directly related to total microbial biomass (fungal and bacterial biomass) determined from microscopic counts. 15N values for microbes were generally higher than for bulk detritus, which would result in higher 15N values for animals preferentially consuming or assimilating microbial cells. The proportion of 15N taken up by detritus during the 15N experiments that remained in microbial cells by the end of the experiments was highest for wood biofilm in Upper Ball Creek (69%), leaves in Walker Branch (65%) and FBOM in Upper Ball Creek (31%). Lower retention proportions (<1–25%) were observed for other substrates. Our results suggest that microbial cells associated with leaves and wood biofilm were most active in 15N–NH4 immobilization, whereas microbial cells associated with FBOM immobilized little 15N from stream water.  相似文献   

20.
Botting, J.P., Muir, L.A., Xiao, S., Li, X. & Lin, J.‐P. 2012: Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia, Vol. 45, pp. 463–475. The relationships of the extant sponge classes, and the nature of the last common ancestor of all sponges, are currently unclear. Early sponges preserved in the fossil record differ greatly from extant taxa, and therefore information from the fossil record is critical for testing hypotheses of sponge phylogenetic relationships that are based on modern taxa. New specimens of the enigmatic sponge Lenica sp., from the Early Cambrian Hetang Biota of South China, exhibit an unusual spicule structure. Each spicule consists of a siliceous core with an axial canal, an organic outer layer and a middle layer interpreted to have been originally calcium carbonate. This finding confirms previous work suggesting the existence of biminerallic spicules in early sponges. Combined with data from other early sponges, the new findings imply that the two fundamental spicule structures of modern sponges were derived from a compound, biminerallic precursor. Spicules are therefore homologous structures in Calcarea and Silicea, and if sponges are paraphyletic with respect to Eumetazoa, then spicules may also have been a primitive feature of Metazoa. □Calcarea, Early Cambrian, Hetang Biota, phylogeny, Silicea, taphonomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号