首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The determination of glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6) activity is usually accomplished by monitoring the decrease of absorbance at 240 nm due to the hydrolysis of S-d-lactoylglutathione. However, it was not possible, using this assay, to detect any enzyme activity in situ, in Saccharomyces cerevisiae permeabilized cells. Glyoxalase II activity was then determined by following the formation of GSH at 412 nm using 5,5'-dithiobis(2-nitrobenzoic acid). Using this method we characterized the kinetics of glyoxalase II in situ using S-d-lactoylglutathione as substrate and compared the results with those obtained for cell-free extracts. The specific activity was found to be (4.08 +/- 0.12) x 10(-2) micromol min-1 mg-1 in permeabilized cells and (3.90 +/- 0.04) x 10(-2) micromol min1 mg-1 in cell-free extracts. Kinetic parameters were Km 0.36 +/- 0.09 mM and V (7.65 +/- 0.59) x 10(-4) mM min-1 for permeabilized cells and Km 0.15 +/- 0.10 mM and V (7.23 +/- 1.04) x 10(-4) mM min-1 for cell-free extracts. d-Lactate concentration was also determined and increased in a linear way with permeabilized cell concentration. gamma-Glutamyl transferase (EC 2.3.2.2), which also accepts S-d-lactoylglutathione as substrate and hence could interfere with glyoxalase II assays, was found to be absent in Saccharomyces cerevisiae permeabilized cells.  相似文献   

2.
The glyoxalase pathway of Leishmania infantum was kinetically characterized as a trypanothione-dependent system. Using time course analysis based on parameter fitting with a genetic algorithm, kinetic parameters were estimated for both enzymes, with trypanothione derived substrates. A K(m) of 0.253 mm and a V of 0.21 micromol.min(-1).mg(-1)for glyoxalase I, and a K(m) of 0.098 mm and a V of 0.18 micromol.min(-1).mg(-1) for glyoxalase II, were obtained. Modelling and computer simulation were used for evaluating the relevance of the glyoxalase pathway as a potential therapeutic target by revealing the importance of critical parameters of this pathway in Leishmania infantum. A sensitivity analysis of the pathway was performed using experimentally validated kinetic models and experimentally determined metabolite concentrations and kinetic parameters. The measurement of metabolites in L. infantum involved the identification and quantification of methylglyoxal and intracellular thiols. Methylglyoxal formation in L. infantum is nonenzymatic. The sensitivity analysis revealed that the most critical parameters for controlling the intracellular concentration of methylglyoxal are its formation rate and the concentration of trypanothione. Glyoxalase I and II activities play only a minor role in maintaining a low intracellular methylglyoxal concentration. The importance of the glyoxalase pathway as a therapeutic target is very small, compared to the much greater effects caused by decreasing trypanothione concentration or increasing methylglyoxal concentration.  相似文献   

3.
4.
Bovine liver mitochondria contain about 10% of the total glyoxalase II activity in the homogenate. Electrophoresis and isoelectric focussing of either crude mitochondrial extract or the purified mitochondrial glyoxalase II resolved the enzyme activity into five forms (pl 6.3, 6.7, 7.1, 7.7, and 7.9). Since bovine liver cytosol contains a single form of glyoxalase II (pl 7.5), at least four forms are exclusively mitochondrial with no counterpart in the cytosol. The relative molecular mass of mitochondrial glyoxalase II is about 23-24 kDa, similar to the cytosolic form. The kinetic constants obtained using S-D-lactoyl, S-acetyl-, S-acetoacetyl-, and S-succinyl-glutathione as substrates are similar to those reported for glyoxalase II from rat liver mitochondria. S-D-Lactoyl- and S-acetoacetyl-glutathione are the best substrates. S-Acetylglutathione is the poorest substrate with respect to both Vmax and Km values.  相似文献   

5.
Cytotoxic methylglyoxal is detoxified by the two-enzyme glyoxalase system. Glyoxalase I (GlxI) catalyzes conversion of non-enzymatically produced methylglyoxal-glutathione hemithioacetal into its corresponding thioester. Glyoxalase II (Glx II) hydrolyzes the thioester into d-lactate and free glutathione. Glyoxalase I and II are metalloenzymes, which possess mononuclear and binuclear active sites, respectively. There are two distinct classes of GlxI; the first class is Zn2+-dependent and is composed of GlxI from mainly eukaryotic organisms and the second class is composed of non-Zn2+-dependent (but Ni2+ or Co2+-dependent) GlxI enzymes (mainly prokaryotic and leishmanial species). GlxII is typically Zn2+-activated, containing Zn2+ and either Fe3+/Fe2+ or Mn2+ at the active site depending upon the biological source. To address whether two classes of GlxII might exist, glyoxalase II from Escherichia coli was cloned and overexpressed and characterized. Unlike E. coli GlxI, which is non-Zn2+-dependent, Zn2+ activates the E. coli GlxII enzyme, with no evidence for Ni2+ metal utilization.  相似文献   

6.
Glyoxalase I converts methylglyoxal and glutathione to S-lactoylglutathione and glyoxalase II converts this compound to D-lactic acid, regenerating glutathione in the process. A recent study from my laboratory has provided evidence that S-lactoylglutathione modulates microtubule assembly in vitro whereas concanavalin A (Con A) has been shown to increase microtubule occurrence in polymorphonuclear leukocytes (PMN). The present report describes the dose-dependent activation by Con A of both glyoxalase I and II in PMN and lymphocytes. In nine experiments with PMN, Con A (100 microgram/ml) increased glyoxalase I and II activities by 19 +/- 8% and 12 +/- 10% (mean +/- S.D.). In 17 experiments with lymphocytes, activation of the two enzymes by 10 microgram/ml Con A was 30 +/- 14% and 28 +/- 8%. Changes occurred after a 1-min incubation with Con A and persisted for at least 60 min. Since both enzyme activities are increased it is not clear if S-lactoylglutathione levels are increased or decreased but presumably they change. The present findings are compatible with the hypothesis that Con A increases microtubule occurrence in PMN by affecting the glyoxalase enzymes. They also represent a newly described early biochemical change caused by Con A in lymphocytes.  相似文献   

7.
Glyoxalase 2 is a beta-lactamase fold-containing enzyme that appears to be involved with cellular chemical detoxification. Although the cytoplasmic isozyme has been characterized from several organisms, essentially nothing is known about the mitochondrial proteins. As a first step in understanding the structure and function of mitochondrial glyoxalase 2 enzymes, a mitochondrial isozyme (GLX2-5) from Arabidopsis thaliana was cloned, overexpressed, purified, and characterized using metal analyses, EPR and (1)H NMR spectroscopies, and x-ray crystallography. The recombinant enzyme was shown to bind 1.04 +/- 0.15 eq of iron and 1.31 +/- 0.05 eq of Zn(II) and to exhibit k(cat) and K(m) values of 129 +/- 10 s(-1) and 391 +/- 48 microm, respectively, when using S-d-lactoylglutathione as the substrate. EPR spectra revealed that recombinant GLX2-5 contains multiple metal centers, including a predominant Fe(III)Z-n(II) center and an anti-ferromagnetically coupled Fe(III)Fe(II) center. Unlike cytosolic glyoxalase 2 from A. thaliana, GLX2-5 does not appear to specifically bind manganese. (1)H NMR spectra revealed the presence of at least eight paramagnetically shifted resonances that arise from protons in close proximity to a Fe(III)Fe(II) center. Five of these resonances arose from solvent-exchangeable protons, and four of these have been assigned to NH protons on metal-bound histidines. A 1.74-A resolution crystal structure of the enzyme revealed that although GLX2-5 shares a number of structural features with human GLX2, several important differences exist. These data demonstrate that mitochondrial glyoxalase 2 can accommodate a number of different metal centers and that the predominant metal center is Fe(III)Zn(II).  相似文献   

8.
Glyoxalase II has been purified from cytosol and mitochondria of spinach leaves. Electrophoresis and isoelectric focussing have resolved cytosolic and mitochondrial glyoxalase II in multiple forms: pl 5.3, 5.8 and 6.2 (cytosol) and pl 4.8 (mitochondria). The enzyme of both localizations is a monomer showing a relative molecular mass of about 26 kDa. The values of kinetic constants using several glutathione thiolesters as substrates, are similar for the enzymes from cytosol and mitochondria. These results extend also to plant the presence in mitochondria of peculiar forms of glyoxalase II, likewise recently demonstrated in mammalians.  相似文献   

9.
Glyoxalase I (S-lactoyl-glutathione methylglyoxal-lyase (isomerizing), EC 4.4.1.5) was assayed using alcoholic, acidic 2,4-dinitrophenylhydrazine to follow the disappearance of methylglyoxal over time, with the absorbance of formed methylglyoxal bis-hydrazone measured at 432 nm. Erythrocyte glyoxalase I activities were found to be 64, 41, and 18 mumole of S-lactoyl glutathione formed min-1 X ml-1 of red blood cells in rat, human, and rabbit blood and 174 mumole X min-1 X mg-1 of protein for yeast. The Km values found in millimolar hemimercaptal were about 0.5. Glyoxalase I activity can be determined in crude tissue preparations without interference from biological materials.  相似文献   

10.
Optimization of efficiency in the glyoxalase pathway   总被引:2,自引:0,他引:2  
A quantitative kinetic model for the glutathione-dependent conversion of methylglyoxal to D-lactate in mammalian erythrocytes has been formulated, on the basis of the measured or calculated rate and equilibrium constants associated with (a) the hydration of methylglyoxal, (b) the specific base catalyzed formation of glutathione-(R,S)-methylglyoxal thiohemiacetals, (c) the glyoxalase I catalyzed conversion of the diastereotopic thiohemiacetals to (S)-D-lactoylglutathione, and (d) the glyoxalase II catalyzed hydrolysis of (S)-D-lactoylglutathione to form D-lactate and glutathione. The model exhibits the following properties under conditions where substrate concentrations are small in comparison to the Km values for the glyoxalase enzymes: The overall rate of conversion of methylglyoxal to D-lactate is primarily limited by the rate of formation of the diastereotopic thiohemiacetals. The hydration of methylglyoxal is kinetically unimportant, since the apparent rate constant for hydration is (approximately 500-10(3))-fold smaller than that for formation of the thiohemiacetals. The rate of conversion of methylglyoxal to (S)-D-lactoylglutathione is near optimal, on the basis that the apparent rate constant for the glyoxalase I reaction (kcatEt/Km congruent to 4-20 s-1 for pig, rat, and human erythrocytes) is roughly equal to the apparent rate constant for decomposition of the thiohemiacetals to form glutathione and methylglyoxal [k(obsd) = 11 s-1, pH 7]. The capacity of glyoxalase I to use both diastereotopic thiohemiacetals, versus only one of the diastereomers, as substrates represents a 3- to 6-fold advantage in the steady-state rate of conversion of the diastereomers to (S)-D-lactoylglutathione.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Purification and characterization of glyoxalase I from Pseudomonas putida   总被引:1,自引:0,他引:1  
Glyoxalase I was purified to apparent homogeneity from Pseudomonas putida. The enzyme was a monomer with a molecular weight of 20,000. The enzyme was most active at pH 8.0. The Km values for methylglyoxal and 4,5-dioxovale-rate are 3.5 mM and 1.2 mM, respectively. Contrary to the case of eukaryotic enzymes, chelating agents showed little inhibitory effects on the enzyme activity. Among the metal ions tested, Zn++ specifically and completely inhibited the activity of the enzyme at a millimolar level. The properties of bacterial glyoxalase I were quite different from mammalian and yeast enzymes.  相似文献   

12.
Glutathione transferase, glyoxalase I and glyoxalase II activities were not evenly distributed among the major helminth groups. Intestinal cestodes and digeneans had higher glutathione transferase activity than parasitic nematodes. High glyoxalase II activity was found in cestodes and digeneans but no glyoxalase I was detectable. Glyoxalase I and II were both detected in nematodes. These results are discussed in relation to the enzymes' suggested role in protection against secondary lipid peroxidation products.  相似文献   

13.
14.
The glyoxalase system is composed of two metalloenzymes, Glyoxalase I and Glyoxalase II. This system is important in the detoxification of methylglyoxal, among other roles. Detailed studies have determined that a number of bacterial Glyoxalase I enzymes are maximally activated by Ni(2+) and Co(2+) ions, but are inactive in the presence of Zn(2+). This is in contrast to the Glyoxalase I enzyme from humans, which is catalytically active with Zn(2+) as well as a number of other metal ions. The structure-activity relationships between these two classes of Glyoxalase I are serving as important clues to how the molecular structures of these proteins control metal activation profiles as well as to clarify the mechanistic chemistry of these catalysts. In addition, the possibility of targeting inhibitors against the bacterial versus human enzyme has the potential to lead to new approaches to combat bacterial infections.  相似文献   

15.
Cigarette smoking is associated with a number of fatal diseases, including cancer of different organs. A number of oxoaldehydes are found in cigarette smoke, among which methylglyoxal (MG) is known to cause toxicity to cells upon accumulation. In biological systems, MG is converted to s-d-lactoylglutathione by glyoxalase I with reduced glutathine (GSH) as a cofactor, and s-d-lactoylglutathione is converted to D-lactic acid with simultaneous regeneration of GSH, by glyoxalase II. In the present study, we have investigated the status of the glyoxalase enzymes in kidney tissues from rats exposed to passive cigarette smoke. No significant change has been noted in glyoxalase I activity. Glyoxalase II was decreased during 1 and 2 weeks of exposure, and after that the activity was increased. The initial decrease in the activity of gly II may be due to the excess amount of methylglyoxal generated due to smoke exposure or the adduct formed by MG and GSH which known to inhibit gly II activity. Both enzymes help in the detoxification of cigarette smoke induced chemicals and biochemicals.  相似文献   

16.
Glyoxalase II participates in the cellular detoxification of cytotoxic and mutagenic 2-oxoaldehydes. Because of its role in chemical detoxification, glyoxalase II has been studied as a potential anti-cancer and/or anti-protozoal target; however, very little is known about the active site and reaction mechanism of this important enzyme. To characterize the active site and kinetic mechanism of the enzyme, a detailed mutational study of Arabidopsis glyoxalase II was conducted. Data presented here demonstrate for the first time that the cytoplasmic form of Arabidopsis glyoxalase II contains an iron-zinc binuclear metal center that is essential for activity. Both metals participate in substrate binding, transition state stabilization, and the hydrolysis reaction. Subtle alterations in the geometry and/or electrostatics of the binuclear center have profound effects on the activity of the enzyme. Additional residues important in substrate binding have also been identified. An overall reaction mechanism for glyoxalase II is proposed based on the mutational and kinetic data from this study and crystallographic data on human glyoxalase II. Information presented here provides new insights into the active site and reaction mechanism of glyoxalase II that can be used for the rational design of glyoxalase II inhibitors.  相似文献   

17.
1. The Michaelis-Menten parameters of labelled D-glucose exit from human erythrocytes at 2 degrees C into external solution containing 50 mM D-galactose were obtained. The Km is 3.4 +/0 0.4 mM, V 17.3 +/- 1.4 MMOL . 1(-1) cell water . min-1 for this infinite-trans exit procedure. 2. The kinetic parameters of equilibrium exchange of D-glucose at 2 degrees C are Km = 25 +/- 3.4 mM, V 30 +/- 4.1 mmol . 1(-1) cell water . min-1. 3. The Km for net exit of D-glucose into solutions containing zero sugar is 15.8 +/- 1.7 mM, V 9.3 +/- 3.3 mmol . 1(-1) cell water . min-1. 4. This experimental evidence corroborates the previous finding of Hankin, B.L., Lieb, W.R. and Stein, W.D. [(1972) Biochim. Biophys. Acta 255, 126--132] that there are sites with both high and low operational affinities for D-glucose at the inner surface of the human erythrocyte membrane. This result is inconsistent with current asymmetric carrier models of sugar transport.  相似文献   

18.
Glyoxalase II, a specific glutathione thiolesterase, has been purified 9100-fold from rat erythrocytes using a purification scheme which employs Affi-Gel blue as a hydrophobic affinity column and also employs a glutathione-affinity column prepared by coupling S-(p-chlorophenacyl)glutathione to Affi-Gel 202. This procedure offers a convenient method for the preparation of highly purified glyoxalase II. Also described is a convenient method for the preparation of S-lactoyl-glutathione, a substrate for glyoxalase II.  相似文献   

19.
Glyoxalase II from rat erythrocytes is a near optimal catalyst for the hydrolysis of S-D-lactoylglutathione in the sense that the magnitude of kcat/Km is limited, in large part, by the rate constant for diffusion-controlled encounter between substrate and active site. The experimental basis for this conclusion is derived from the dependencies of the kinetic properties of the enzyme on solution viscosity (pH 7, Ic = 0.1 M, 25 degrees C). When sucrose is used as a viscogenic agent, kcat/Km for S-D-lactoylglutathione (8.8 x 10(5) M-1 s-1) decreases markedly with increasing solution viscosity. This effect appears not to be due to a sucrose-induced change in the intrinsic kinetic properties of the enzyme, since kcat/Km for the slow substrate S-acetylglutathione (3.7 x 10(4) M-1 s-1) is nearly independent of solution viscosity. Quantitative treatment of the data using Stoke's law indicates that the rate of hydrolysis of S-D-lactoylglutathione will be approximately 50% diffusion limited when [substrate] much less than Km; the encounter complex between enzyme and substrate partitions nearly equally between product formation and dissociation to form free enzyme and substrate. The same conclusion is reached when glycerol is used as a viscogenic agent, once the apparent activation effect of glycerol on the intrinsic activity of the enzyme is taken into account. Finally, the rate of formation of the encounter complex between substrate and active site may be governed to a significant extent by charge-charge interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In principle, competitive inhibitors of glyoxalase I that also serve as substrates for the thioester hydrolase glyoxalase II might function as tumor-selective anti-cancer agents, given the role of these enzymes in removing cytotoxic methylglyoxal from cells and the observation that glyoxalase II activity is abnormally low in some types of cancer cells. In support of the feasibility of this anticancer strategy, an inhibitor of this type has been synthesized by a thioester-interchange reaction between glutathione and N-hydroxy-N-methylcarbamate 4-chlorophenyl ester to give S-(N-hydroxy-N-methylcarbamoyl)glutathione (1). This compound was designed to be a tight-binding inhibitor of glyoxalase I, on the basis of its stereoelectronic similarity to the enediol(ate) intermediate that forms along the reaction pathway of this enzyme. Indeed, 1 is a competitive inhibitor of yeast glyoxalase I, with an inhibition constant (Ki = 68 microM) that is approximately 30-fold lower than that reported for S-D-lactoylglutathione and approximately 7-fold lower than the Km for glutathione-methylglyoxal thiohemiacetal. In addition, 1 is a substrate for bovine liver glyoxalase II, with a Km (0.48 mM) approximately equal to that of the normal substrate S-D-lactoyglutathione and a kcat approximately 2 x 10(-5)-fold that of the normal substrate. Membrane transport studies show that 1 can be delivered into human erythrocytes (used here as a model cell) either by direct diffusion of 1 across the cell membrane or by more rapid diffusion of the glycylethyl ester of 1 across the cell membrane, followed by the catalyzed hydrolysis of the ester to give 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号