首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Plant high-mobility-group (HMG) chromosomal proteins are the most abundant and ubiquitous nonhistone proteins found in the nuclei of higher eukaryotes. There are only two families of HMG proteins, namely, HMGA and HMGB in plants. The cDNA encoding wheat HMGa protein was isolated and characterized. Wheat HMGA cDNA encodes a protein of 189 amino acid residues. At its N terminus, there is a histone H1-like structure, which is a common feature of plant HMGA proteins, followed by four AT-hook motifs. Polymerase chain reaction results show that the gene contains a single intron of 134 bp. All four AT-hook motifs are encoded by the second exon. Northern blot results show that the expression of HMGA gene is much higher in organs undergoing active cell proliferation. Gel retardation analysis show that wheat HMGa, b, c and histone H1 bind to four-way-junction DNA with high binding affinity, but affinity is dramatically reduced with increasing Mg(2+) and Na(+) ion concentration. Competition binding studies show that proteins share overlapping binding sites on four-way-junction DNA. HMGd does not bind to four-way-junction DNA.  相似文献   

2.
Two groups of plant chromatin-associated high mobility group (HMG) proteins, namely the HMGA family, typically containing four A/T-hook DNA-binding motifs, and the HMGB family, containing a single HMG-box DNA-binding domain, have been identified. We have examined the interaction of recombinant maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA in the presence of H1 differed from that observed in the absence of H1. HMGA and the HMGB proteins bound H1-containing nucleosome particles with similar affinity. The plant HMG proteins could also bind nucleosomes that were briefly treated with trypsin (removing the N-terminal domains of the core histones), suggesting that the histone N-termini are dispensable for HMG protein binding. In the presence of untreated nucleosomes and trypsinised nucleosomes, HMGB1 could be chemically crosslinked with a core histone, which indicates that the trypsin-resistant part of the histones within the nucleosome is the main interaction partner of HMGB1 rather than the histone N-termini. In conclusion, these results indicate that specific nucleosome binding of the plant HMGB proteins requires simultaneous DNA and histone contacts.  相似文献   

3.
T W Brotherton  G D Ginder 《Biochemistry》1986,25(11):3447-3454
High mobility group (HMG) proteins 14 and 17 bind to mononucleosomes in vitro, but the exact nature of this binding has not been clearly established. A new method was developed to allow direct membrane transfer of DNA from HMG 14/17 bound and unbound nucleosomes, which have been separated by acrylamide gel electrophoresis. Hybridization analysis of membranes obtained by this method revealed that the HMG 14/17 bound nucleosomes of avian erythrocytes and rat hepatic tumor (HTC) cells were enriched, about 2-fold, in actively transcribed genes and also inactive but DNase I sensitive genes. Nucleosomes containing inactive, DNase I resistant genes were bound by HMG 14/17, but not preferentially. Several factors that have been reported to greatly influence the binding of HMG 14/17 to nucleosomes in vitro were tested and shown to not account for the preferential binding to DNase I sensitive chromatin. These factors include nucleosomal linker DNA length, single-stranded DNA nicks, and DNA bulk hypomethylation. An additional factor, histone acetylation, was preferentially associated with the HMG 14/17 bound chromatin fraction of avian erythrocytes, but it was not associated with the HMG 14/17 bound chromatin fraction of metabolically active HTC cells. The latter finding was true for all kinetic forms of histone acetylation.  相似文献   

4.
5.
The high-mobility-group (HMG) chromosomal protein wheat HMGa was purified to homogeneity and tested for its binding characteristics to double-stranded DNA. Wheat HMGa was able to bind to P268, an A/T-rich fragment derived from the pea plastocyanin gene promoter, producing a small mobility shift in gel retardation assays where the bound complex was sensitive to addition of proteinase K but resistant to heat treatment of the protein, consistent with the identity of wheat HMGa as a putative HMG-I/Y protein. Gel retardation assays and southwestern hybridization analysis revealed that wheat HMGa could selectively interact with the DNA polynucleotides poly(dA).poly(dT), poly(dAdT).poly(dAdT), and poly(dG).poly(dC), but not with poly(dGdC).poly(dGdC). Surface plasmon resonance analysis determined the kinetic and affinity constants of sensor chip-immobilized wheat HMGa for double-stranded DNA 10-mers, revealing a good affinity of the protein for various dinucleotide combinations, except that of alternating GC sequence. Thus contrary to prior reports of a selectivity of wheat HMGa for A/T-rich DNA, the protein appears to be able to interact with sequences containing guanine and cytosine residues as well, except where G/C residues alternate directly in the primary sequence.  相似文献   

6.
HMG proteins are abundant chromosomal non-histone proteins. It has been suggested that the HMG proteins may play an important role in the structure and function of chromatin. In the present study, the binding of HMG proteins (HMG1/2 and HMG14/17) to the core DNA sequence of DNaseI hypersensitive site 2 (HS2core DNA sequence, -10681--10970 bp) in the locus control region (LCR) of the human b-like globin gene cluster has been examined by using both the in vitro nucleosome reconstitution and the gel mobility shift assays. Here we show that HMG1/2 can bind to the naked HS2core DNA sequence, however, HMG14/17 cannot. Using the in vitro nucleosome reconstitution we demonstrate that HMG14/17 can bind to the HS2core DNA sequence which is assembled into nucleosomes with the core histone octamer transferred from chicken erythrocytes. In contrast, HMG1/2 cannot bind to the nucleosomes reconstituted in vitro with the HS2core DNA sequence. These results indicate that the binding patterns between HMG proteins and the HS2core DNA sequence which exists in different states (the naked DNA or the in vitro reconstituted nucleosomal DNA) are quite different. We speculate that HMG proteins might play a critical role in the regulation of the human β-like globin gene's expression.  相似文献   

7.
HMG proteins are abundant chromosomal non-histone proteins. It has been suggested that the HMG proteins may play an important role in the structure and function of chromatin. In the present study, the binding of HMG proteins (HMG1/2 and HMG14/17) to the core DNA sequence of DNaseI hypersensitive site 2 (HS2core DNA sequence, -10681-10970 bp) in the locus control region (LCR) of the human β-like globin gene cluster has been examined by using both thein vitro nucleosome reconstitution and the gel mobility shift assays. Here we show that HMG1/2 can bind to the naked HS2core DNA sequence, however, HMG14/17 cannot. Using thein vitro nucleosome reconstitution we demonstrate that HMG14/17 can bind to the HS2core DNA sequence which is assembled into nucleosomes with the core histone octamer transferred from chicken erythrocytes. In contrast, HMG1/2 cannot bind to the nucleosomes reconstitutedin vitro with the HS2core DNA sequence. These results indicate that the binding patterns between HMG proteins and the HS2core DNA sequence which exists in different states (the naked DNA or thein vitro reconstituted nucleosomal DNA) are quite different. We speculate that HMG proteins might play a critical role in the regulation of the human β-like globin gene’s expression.  相似文献   

8.
9.
HMG proteins are abundant chromosomal non-histone proteins. It has been suggested that the HMG proteins may play an important role in the structure and function of chromatin. In the present study, the binding of HMG proteins (HMG1/2 and HMG14/17) to the core DNA sequence of DNaseI hypersensitive site 2 (HS2core DNA sequence, -10681-10970 bp) in the locus control region (LCR) of the human β-like globin gene cluster has been examined by using both thein vitro nucleosome reconstitution and the gel mobility shift assays. Here we show that HMG1/2 can bind to the naked HS2core DNA sequence, however, HMG14/17 cannot. Using thein vitro nucleosome reconstitution we demonstrate that HMG14/17 can bind to the HS2core DNA sequence which is assembled into nucleosomes with the core histone octamer transferred from chicken erythrocytes. In contrast, HMG1/2 cannot bind to the nucleosomes reconstitutedin vitro with the HS2core DNA sequence. These results indicate that the binding patterns between HMG proteins and the HS2core DNA sequence which exists in different states (the naked DNA or thein vitro reconstituted nucleosomal DNA) are quite different. We speculate that HMG proteins might play a critical role in the regulation of the human β-like globin gene’s expression.  相似文献   

10.
11.
A DNA topoisomerase activity is found to be associated with the nucleosomes released by the Staphylococcal nuclease digestion of HeLa nuclei. Such an association is found to be salt dependent. A number of criteria have established that this DNA topoisomerase activity is due to HeLa topo I (Liu, L. F. and Miller, K. G. (1980) Proc. Natl. Acad. Sci. USA 78, 3489-3491). A similar association has been demonstrated from the in vitro studies using purified mononucleosomes and eukaryotic DNA topoisomerase I. Nonhistone HMG proteins and histone H1 are found to stimulate topoisomerase activity in vitro and form tight complexes with eukaryotic DNA topoisomerase I. The intimate interactions of topoisomerase I with chromosomal proteins and nucleosomes may be an essential feature of the topoisomerase function in vivo.  相似文献   

12.
We have used a two-dimensional (deoxyribonucleoprotein leads to DNA) electrophoretic binding assay to study the interaction of the purified high mobility group protein HMG17 with isolated HeLa mononucleosomes as a function of their DNA fragment size and the presence of ubiquitin-H2A semihistone. No significant differences between affinities of HMG17 for ubiquitinated and non-ubiquitinated core mononucleosomes were observed. In striking contrast, the apparent affinity of HMG17 for a mononucleosome increases more than 100-fold upon an increase of the length of the mononucleosomal DNA fragment by as few as 3 to 5 bp over the core DNA length (integral of 146 bp). We suggest that the magnitude of this effect is sufficient to explain the preferential binding of HMG17 in vitro to mononucleosomes derived from actively transcribed genes.  相似文献   

13.
The binding of isolated high mobility group proteins HMG (1+2) with nucleosomes was studied using gel electrophoresis. The interaction of HMG (1+2) with mononucleosomes could be detected as a new discrete electrophoretic band with a decreased mobility only after cross-linking of HMG (1+2)-nucleosome complex by formaldehyde. Approximately two molecules of the large HMG proteins were bound per nucleosomal particle of a DNA length of 185 base pairs, lacking histones H1 and H5. Using the same techniques, no binding was observed with core particles of a DNA length of 145 base pairs.  相似文献   

14.
15.
Chromosomal proteins have been isolated from barley (Hordeum vulgare) and corn (Zea mays) nuclei by extraction with 5% perchloric acid. In each plant, one protein was shown to belong to the HMG proteins. Their molecular weights are very close to that of HMG 14 from chicken erythrocytes, as shown by electrophoretic mobility in SDS polyacrylamide gels. In acetic acid-urea-Triton polyacrylamide gels they migrate between HMG 1,2 and HMG 14, from chicken erythrocytes. Their amino acid compositions are typical of HMG proteins, with equivalent high values of acidic and basic residues. Extraction of HMG's from purified barley chromatin fractions with 0.35 M NaCl considerably reduces histone H2 contamination and increases the yield of HMG up to 0.7% of the total histones. In this technique a second protein was extracted which is soluble in 2% Trichloroacetic acid and shows electrophoretic mobility analogous to those of HMG 14 and 17 from chicken erythrocytes. Whether or not these proteins are counterparts of the animal HMG's 1–2 or HMG's 14–17 is discussed.  相似文献   

16.
The rat liver single-stranded DNA binding protein, S25 and HD25, isolated by differential DNA cellulose affinity chromatography was compared to the high mobility group proteins, HMG1 and HMG2, isolated from rat liver chromatin by the technique of Goodwin et al. (Goodwin, G. H., Sanders, C., and Johns, E. W. (1973) Eur. J. Biochem. 38, 14-19). Analysis of their amino acid composition, electrophoretic mobility, and tryptic peptide map reveal the identity of the single-stranded DNA binding protein with HMG1 protein, implying that the rat liver HMG1 protein becomes able both to destabilize a double helix of DNA and to stimulate homologous DNA polymerases only when rat liver cells enter a phase of DNA synthesis, possibly after a specific modification.  相似文献   

17.
18.
19.
The high mobility group proteins 1 and 2 (HMG1/2) and histone B4 are major components of chromatin within the nuclei assembled during the incubation of Xenopus sperm chromatin in Xenopus egg extract. To investigate their potential structural and functional roles, we have cloned and expressed Xenopus HMG1 and histone B4. Purified histone B4 and HMG1 form stable complexes with nucleosomes including Xenopus 5S DNA. Both proteins associate with linker DNA and stabilize it against digestion with micrococcal nuclease, in a similar manner to histone H1. However, neither histone B4 nor HMG1 influence the DNase I or hydroxyl radical digestion of DNA within the nucleosome core. We suggest that HMG1/2 and histone B4 have a shared structural role in organizing linker DNA in the nucleosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号