首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure and dimensions of chloroplasts in leaf mesophyll cells were quantitatively examined in three parental inbred lines of maize (Zea mays L.) and their four hybrids subjected to two types of four-week low-temperature (LT) treatment: the abrupt onset of chilling temperatures (“severe chilling”, SC) and the gradual, more moderate one (“moderate chilling”, MC). The relationship between the response of individual genotypes to one or the other type of chilling was analyzed as well as the possibility to predict the behaviour of chloroplasts in hybrids from that of their parents. Although selected parameters of chloroplast ultrastructure (e.g. volume densities of granal and intergranal thylakoids, plastoglobuli, and peripheral reticulum) and dimensions changed due to the exposure of maize plants to LT, no general pattern of such changes was found for this species due to the observed intraspecific variability. The response of some genotype to SC could not be predicted from its behaviour under MC (and vice versa) and no clear rules could be applied for the inheritance of chloroplast response to chilling in the general sense. Thus, great caution should be always taken when interpreting the results of studies aimed at the dissection of chloroplast ultrastructure as affected by LT, particularly in case such studies are made with one genotype or under one type of chilling only.  相似文献   

2.
Kutík  J.  Kočova  M.  Holá  D.  Körnerová  M. 《Photosynthetica》2000,36(4):497-507
Changes in Hill reaction activity (HRA) and ultrastructure of mesophyll cell (MC) chloroplasts were studied during the ontogeny of third leaf of maize plants using polarographic oxygen evolution measurement, transmission electron microscopy, and stereology. The chloroplast ultrastructure was compared in young (actively growing), mature, and senescing leaves of two different inbreds and their reciprocal F1 hybrids. Statistically significant differences in both HRA and MC chloroplast ultrastructure were observed between different stages of leaf ontogeny. Growth of plastoglobuli was the most striking characteristic of chloroplast maturation and senescence. The chloroplasts in mature and senescing leaves had a more developed system of thylakoids compared to the young leaves. Higher HRA was usually connected with higher thylakoid volume density of MC chloroplasts.  相似文献   

3.
Changes in Hill reaction activity (HRA) and ultrastructure of mesophyll cell (MC) chloroplasts were studied during the ontogeny of third leaf of maize plants using polarographic oxygen evolution measurement, transmission electron microscopy, and stereology. The chloroplast ultrastructure was compared in young (actively growing), mature, and senescing leaves of two different inbreds and their reciprocal F1 hybrids. Statistically significant differences in both HRA and MC chloroplast ultrastructure were observed between different stages of leaf ontogeny. Growth of plastoglobuli was the most striking characteristic of chloroplast maturation and senescence. The chloroplasts in mature and senescing leaves had a more developed system of thylakoids compared to the young leaves. Higher HRA was usually connected with higher thylakoid volume density of MC chloroplasts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Pechová  R.  Kutík  J.  Holá  D.  Kočová  M.  Haisel  D.  Vičánková  A. 《Photosynthetica》2003,41(1):127-136
The effect of three different concentrations of amitrole (AM), a bleaching herbicide affecting carotenogenesis, on chloroplast ultrastructure, photosynthetic pigment contents, and photochemical activity was studied in two maize genotypes differing in photosynthetic characteristics. The content of photosynthetic pigments in leaves of plants treated with low (20 M) AM concentration was similar to control plants and no damaging effect of the herbicide on the ultrastructure of either mesophyll (MC) or bundle-sheath (BSC) cell chloroplasts was observed. Higher (60 and 120 M) concentrations of AM caused a significant decrease in the content of carotenoids (especially xanthophylls), which was followed by photooxidative destruction of chlorophylls and some alterations of chloroplast ultrastructure. MC chloroplasts appeared more sensitive to the damaging effect of AM compared to BSC chloroplasts. A significant decrease in the amount of both granal and intergranal thylakoids in MC chloroplasts was observed with the increasing concentration of AM. As regards BSC chloroplasts, rapid decrease in the volume density of starch inclusions was found in plants treated with higher concentrations of AM. When 120 M AM was used, both MC and BSC chloroplasts contained just a few thylakoid membranes that were strongly altered. The changes in the ultrastructure of MC chloroplasts were accompanied by the changes in their photochemical activity. The formation of chloroplast protrusions after treatment of plants with AM as well as in control plants was also observed.  相似文献   

5.
Kutík  J.  Holá  D.  Vičánková  A.  Šmídová  M.  Kočová  M.  Körnerová  M.  Kubínová  L. 《Photosynthetica》2001,39(4):497-506
Differences in ultrastructural parameters of mesophyll cell (MC) chloroplasts, contents of photosynthetic pigments, and photochemical activities of isolated MC chloroplasts were studied in the basal, middle, and apical part of mature or senescing leaf blade of two maize genotypes. A distinct heterogeneity of leaf blade was observed both for structural and functional characteristics of chloroplasts. In both mature and senescing leaves the shape of MC chloroplasts changed from flat one in basal part of leaf to nearly spherical one in leaf apex. The volume density of granal thylakoids decreased from leaf base to apex in both types of leaves examined, while the amount of intergranal thylakoids increased in mature leaves but decreased in senescing leaves. The most striking heterogeneity was found for the quantity of plastoglobuli, which strongly increased with the increasing distance from leaf base. The differences in chloroplast ultrastructure were accompanied by differences in other photosynthetic characteristics. The Hill reaction activity and activity of photosystem 1 of isolated MC chloroplasts decreased from leaf base to apex in mature leaves. Apical part of senescing leaf blade was characterised by low contents of chlorophyll (Chl) a and Chl b, whereas in mature leaves, the content of Chls as well as the content of total carotenoids (Car) slightly increased from basal to apical leaf part. This was reflected also in the ratio Chl (a+b)/total Car; the ratio of Chl a/b did not significantly differ between individual parts of leaf blade. Both genotypes examined differed in the character of developmental gradient observed along whole length of leaf blade.  相似文献   

6.
Brian A. Fineran 《Protoplasma》1995,189(3-4):216-228
Summary Korthalsella (Viscaceae) is a dwarf mistletoe attached to its host branch by a single haustorium. Plants are leafless with flattened or cylindrical stems that function in photosynthesis. When a fresh haustorium is cut the sucker within the host appears bright green. Transmission electron microscopy reveals that this greening is due to chloroplasts, but that their organization differs from those of the aerial stem. The three representatives of Korthalsella endemic to New Zealand were the main species investigated. In the stem, chloroplasts have short stacks of cylindrical grana interconnected by stroma thylakoids typical of normal chloroplasts. Sucker chloroplasts have a more variable organization, with most containing extensive granal stacks and poorly differentiated stroma thylakoids. These granal thylakoids exhibit extensive partitions formed by appression of adjacent membranes. Some sucker plastids also approach etioplasts in having a prominent prolamellar body from which radiate thylakoids with short partitions. Sucker chloroplasts usually contain a few large starch grains, plastoglobuli, and sometimes also a stroma centre. The extensive granal thylakoids in sucker chloroplasts of Korthalsella resemble that found in certain shade plants and tissue grown under low light conditions. Sucker chloroplasts probably have a low level of photosynthesis. This activity might provide a local source of osmotically active material used to assist transport between host and parasite.  相似文献   

7.
Effects of high-temperature stress (HTS) and PEG-induced water stress (WS), applied separately or in combination, on the functional activity and ultrastructure of the photosynthetic apparatus (PSA) of maize (Zea mays L.) and sunflower (Helianthus annuus L.) plants were investigated. In maize plant tissues WS provoked the decrease in RWC by 10.9 %, HTS by 7.0 %, and after simultaneous application of the both treatments the decrease was 32.7 % in comparison with control plants. Similar but more expressed changes were observed in sunflower plants. Sunflower was more sensitive to these stresses. Net photosynthetic rate decreased significantly after all treatments, more in sunflower. In mesophyll chloroplasts after separately applied WS and HTS the number of grana and thylakoids was reduced and electron-transparent spaces appeared. At combined stress (WS+HTS) granal and stromal thylakoids were considerably affected and chloroplast envelope in many of them was partially disrupted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Measurements of ultrastructural characteristics of chloroplast thylakoids are important for studies of ontogenic or ecological limitations of leaf photosynthetic functions. Most frequently, volumetric proportion of thylakoids in the chloroplast is measured; however, such measurement does not provide a direct information about the surface area of thylakoids which is most important from the functional point of view. Therefore, we adapted the stereological method using “local vertical windows” for estimating thylakoid surface area in the chloroplast volume and compared thus obtained surface density results with results of conventional volume density measurements. The methods were tested in the study of chloroplast ultrastructure in the leaves of plants of two maize (Zea mays L.) hybrid combinations, 2013×CE810 and CE704×CE810, developing in control and chilling conditions. Correlation analysis revealed a tight relationship between the granal/intergranal thylakoid surface density and volume density results, both indicating that under chilling conditions the development of the system of thylakoids in maize leaves is suppressed, while the difference is more pronounced in CE704 than in CE810 genotype, known to have a better photosynthetic performance.  相似文献   

9.
Ultrastructural changes in chloroplasts of tobacco plants (Nicotiana tabacum L.) with the introduced desC gene for the acyl-lipid Δ9-desaturase from the thermophilic cyanobacterium Synechococcus vulcanus were investigated during plant acclimation to cold. Control plants were transformed with an empty pGA482 binary vector. At optimum growth temperature, a decreased number of grana and thylakoids and an increased number of plastoglobules and their larger area were observed in transgenic plants when compared to control ones. In control plants, acclimation to cold (6 days at 10°C) resulted in the larger areas of chloroplasts and grana. These changes indicated starting cold-induced injuries manifested in swelling of the stroma and a slight decrease in the total number of thylakoids in the chloroplast. In contrast, transgenic plants responded to cold by reducing the chloroplast, granal, and plastoglobule areas. Meantime, the number of thylakoids per granum increased noticeably. The total number of thylakoids in the chloroplast increased from 123 to 203. It was concluded that expression of the acyl-lipid Δ9-desaturase gene in tobacco plants provided for the formation of the cell ultrastructure similar to one characteristic of cold-tolerant plants.  相似文献   

10.
Light-induced structural changes of chloroplasts and their lamellae were studied in leaves of Pisum sativum L., cv. Blue Bantam, using electron microscopy. Upon illumination of 14-day-old plants with 2000 lux, the chloroplasts decreased in thickness by about 23% with an accompanying increase in electron scattering by the stroma. Concomitantly, the average thickness of granal lamellae (thylakoids) decreased from 195 ± 4 angstroms in the dark to 152 ± 4 angstroms in the light, and this change was half-saturated at only 50 lux. Lamellar flattening at 50 lux and its reversal in the dark both had half-times of a minute or less. The thickness of a partition (a pair of apposed lamellar membranes) was 140 ± 9 angstroms in both the light and the dark, indicating that the observed light-induced change was in the volume enclosed within the thylakoid. The effect of illumination could be inhibited by various uncouplers of photophosphorylation but not by 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea, suggesting that it depended on ATP (or its precursor). In the presence of 0.5 micromolar nigericin, the thickness of the granal lamellae increased in the light to 213 ± 3 angstroms; this may reflect an uptake of K+ into an osmotically responding space within the thylakoids.  相似文献   

11.
Abstract. The effects of light and water stress upon chilling injury of chloroplasts have been assessed by electron microscopy in seedlings of three species known to differ in their chilling susceptibility. Chilling injury to chloroplasts was first manifested by distortion and swelling of thylakoids, reduction in starch granule size, and the formation of small vesicles of the envelope, called the peripheral reticulum. More prolonged treatment produced accumulations of lipid droplets, increased staining of the stroma, disintegration of the envelope, and mixing with cytoplasmic contents. Cotton, a notably chilling-sensitive plant, and bush bean, a somewhat less sensitive plant, showed damage within 6 h when exposed to both light and water stress at chilling temperatures (5°C). Even collard, a chilling-resistant species, exhibited signs of chilling injury to chloroplasts after 6 h when exposed to both light and water stress but the plastids remained intact throughout the 48 h of treatment. Comparable chilling injury does not occur in cotton until around 72 h if the plants are exposed to water stress or light separately. Bush bean was affected less by separate treatments of light and water stress. The least chilling injury occurred in all three species when they were kept in the dark at a high humidity.  相似文献   

12.
Many C4 plants, including maize, perform poorly under chilling conditions. This phenomenon has been linked in part to decreased Rubisco abundance at lower temperatures. An exception to this is chilling‐tolerant Miscanthus, which is able to maintain Rubisco protein content under such conditions. The goal of this study was to investigate whether increasing Rubisco content in maize could improve performance during or following chilling stress. Here, we demonstrate that transgenic lines overexpressing Rubisco large and small subunits and the Rubisco assembly factor RAF1 (RAF1‐LSSS), which have increased Rubisco content and growth under control conditions, maintain increased Rubisco content and growth during chilling stress. RAF1‐LSSS plants exhibited 12% higher CO2 assimilation relative to nontransgenic controls under control growth conditions, and a 17% differential after 2 weeks of chilling stress, although assimilation rates of all genotypes were ~50% lower in chilling conditions. Chlorophyll fluorescence measurements showed RAF1‐LSSS and WT plants had similar rates of photochemical quenching during chilling, suggesting Rubisco may not be the primary limiting factor that leads to poor performance in maize under chilling conditions. In contrast, RAF1‐LSSS had improved photochemical quenching before and after chilling stress, suggesting that increased Rubisco may help plants recover faster from chilling conditions. Relatively increased leaf area, dry weight and plant height observed before chilling in RAF1‐LSSS were also maintained during chilling. Together, these results demonstrate that an increase in Rubisco content allows maize plants to better cope with chilling stress and also improves their subsequent recovery, yet additional modifications are required to engineer chilling tolerance in maize.  相似文献   

13.
Eun-Ha Kim  Peter Horton 《BBA》2005,1708(2):187-195
Chloroplasts in plants and some green algae contain a continuous thylakoid membrane system that is structurally differentiated into stacked granal membranes interconnected by unstacked thylakoids, the stromal lamellae. Experiments were conducted to test the hypothesis that the thermodynamic tendency to increase entropy in chloroplasts contributes to thylakoid stacking to form grana. We show that the addition of bovine serum albumin or dextran, two very different water-soluble macromolecules, to a suspension of envelope-free chloroplasts with initially unstacked thylakoids induced thylakoid stacking. This novel restacking of thylakoids occurred spontaneously, accompanied by lateral segregation of PSII from PSI, thereby mimicking the natural situation. We suggest that such granal formation, induced by the macromolecules, is partly explained as a means of generating more volume for the diffusion of macromolecules in a crowded stromal environment, i.e., greater entropy overall. This mechanism may be relevant in vivo where the stroma has a very high concentration of enzymes of carbon metabolism, and where high metabolic fluxes are required.  相似文献   

14.
Chloroplasts in plants and some green algae contain a continuous thylakoid membrane system that is structurally differentiated into stacked granal membranes interconnected by unstacked thylakoids, the stromal lamellae. Experiments were conducted to test the hypothesis that the thermodynamic tendency to increase entropy in chloroplasts contributes to thylakoid stacking to form grana. We show that the addition of bovine serum albumin or dextran, two very different water-soluble macromolecules, to a suspension of envelope-free chloroplasts with initially unstacked thylakoids induced thylakoid stacking. This novel restacking of thylakoids occurred spontaneously, accompanied by lateral segregation of PSII from PSI, thereby mimicking the natural situation. We suggest that such granal formation, induced by the macromolecules, is partly explained as a means of generating more volume for the diffusion of macromolecules in a crowded stromal environment, i.e., greater entropy overall. This mechanism may be relevant in vivo where the stroma has a very high concentration of enzymes of carbon metabolism, and where high metabolic fluxes are required.  相似文献   

15.
Mesophyll chloroplasts of the C4-pathway grasses Sorghum and Paspalum and of the C3-pathway legume soybean undergo ultrastructural changes under moderate light intensities (170 w·m−2, 400-700 nanometers) at a tme when photosynthesis is much reduced by low temperature (10 C). The pattern of ultrastructural change was similar in these species, despite some differences in the initial sites of low temperature action on photosynthesis and differences in their mechanisms of CO2 fixation. Starch grains in the chloroplasts rapidly reduce in size when chilling stress is applied. At or before the time starch grains completely disappear the membranes of the individual stromal thylakoids close together, reducing the intraspace between them while the chloroplast as a whole begins to swell. Extensive granal stacking appears to hold the thylakoids in position for some time, causing initial swelling to occur in the zone of the peripheral reticulum, when present. At more advanced stages of swelling the thylakoid system unravels while the thylakoid intraspaces dilate markedly. Initial thylakoid intraspace contraction is tentatively ascribed to an increase in the transmembrane hydrogen ion gradient causing movement of cations and undissociated organic acids from the thylakoid intraspace to the stroma. Chloroplast swelling may be caused by a hold-up of some osmotically active photosynthetic product in the chloroplast stroma. After granal unraveling and redilation of the thylakoid intraspaces, chloroplasts appear similar to those isolated in low salt hypotonic media. At the initial stages of stress-induced ultrastructural change, a marked gradient in degree of chloroplast swelling is seen within and between cells, being most pronounced near the surface of the leaf directly exposed to light.  相似文献   

16.
Tomato is a cold-sensitive crop that is vulnerable to chilling injury. To screen for chilling resistance in tomato mutants, seeds were irradiated with different doses of 60Co-γ and then evaluated according to the five stages of the chilling injury index. Moreover, physiological indexes and observation of the submicroscopic structure by electron microscopy were used to examine cold resistance in the mutants. The physiological index results showed much higher cold resistance in the mutants compared to wild type. The cellular structures of the cold-resistant mutants were more complete than in wild-type plants after chilling treatment. The chloroplasts of the mutants were close to the cell periphery; the double membrane structure of the chloroplast was intact, and well-developed granal stacks were interconnected by stroma. Compared to wild-type plants, the stomatal density of cold-resistant mutants increased considerably, though the stomatal size showed no obvious changes.  相似文献   

17.
Ultrastructural investigations of cells and organelles by transmission electron microscopy (TEM) usually lead to two-dimensional information of cell structures without supplying exact quantitative data due to the limited number of investigated ultrathin sections. This can lead to misinterpretation of observed structures especially in context of their three-dimensional (3D) assembly. 3D investigations and quantitative morphometric analysis are therefore essential to get detailed information about the arrangement and the amount of subcellular structures inside a cell or organelle, respectively, especially when the plant sample was exposed to environmental stress. In the present research, serial sectioned chloroplasts, mitochondria, and peroxisomes from first year spruce needles (Picea abies (L.) Karst.) were 3D reconstructed and digitally measured using a computer-supported image analysis system in order to obtain a detailed quantitative characterization of complete cell organelles including precise morphological data of drought-induced fine structural changes. In control plants, chloroplast volume was composed of 56% stroma, 15% starch, 27% thylakoids, and 2% plastoglobules. In drought-stressed chloroplasts, the relative volume of both the thylakoids and the plastoglobules significantly increased to 37% and 12%, respectively. Chloroplasts of stressed plants differed from control plants not only in the mean thylakoid and plastoglobules content but also in the complete lack of starch grains. Mitochondria occurred in variable forms in both control and stressed samples. In stressed plants, mitochondria showed a significant smaller mean volume which was only 81% when compared with the control organelles. Peroxisomes were inconspicuous in both samples and their volume did not differ between control and drought-stressed samples. The present study shows that specific subcellular structures are subject to significant quantitative changes during drought stress of spruce needles giving a detailed insight in adaptation processes of the investigated cell organelles.  相似文献   

18.
Growth, CO2 exchange, and the ultrastructure of chloroplasts were investigated in the leaves of potato plants (Solanum tuberosum L., cv. Désirée) of wild type and transformed with a gene for yeast invertase under the control of patatin class I B33 promoter (for apoplastic enzyme) grown in vitro on the Murashige and Skoog medium supplemented with 2% sucrose. At a temperature of 22°C optimal for growth, the transformed plants differed from the plants of wild type in retarded growth and a lower rate of photosynthesis as calculated per plant. On a leaf dry weight basis, photosynthesis of transformed plants was higher than in control plants. Under hypothermia (5°C), dark respiration and especially photosynthesis of transformed plants turned out to be more intense than in control material. After a prolonged exposure to low temperature (6 days at 5°C), in the plants of both genotypes, the ultrastructure of chloroplasts changed. Absolute areas of sections of chloroplasts and starch grains rose, and the area of plastoglobules decreased; in transformed plants, these changes were more pronounced. By some ultrastructural characteristics: a reduction in the cold of relative total area of sections of starch grains and plastoglobules (in percents of the chloroplast section area) and in the number of granal thylakoids (per a chloroplast section area), transformed plants turned out to be more cold resistant than wild-type plants. The obtained results are discussed in connection with changes in source-sink relations in transformed potato plants. These changes modify the balance between photosynthesis and retarded efflux of assimilates, causing an increase in the intracellular level of sugars and a rise in the tolerance to chilling.  相似文献   

19.
The 515 nm absorbance change was studied in mesophyll and bundle sheath chloroplasts of maize, which contain different amounts of grana. The amplitude of the 515 nm signal (induced by 3 μs flashes repeated at 4 s intervals) has shown a correlation with the granum content of the samples. However, upon addition of N-methylphenazonium methosulphate the 515 nm signal became independent of the amount of grana: in agranal thylakoids a large pool of silent Photosystem I was activated and, as a result, the amplitude of the 515 nm signal of agranal chloroplasts increased to the level exhibited by granal chloroplasts.These data show that the 515 nm absorbance change is not limited to small closed vesicles like grana, but in the presence of suitable electron donors single lamellae of bundle sheath chloroplasts can also be active.  相似文献   

20.
Mature sunflower leaves were exposed to partial shading (35 or 14% of normal sun) or darkness (0% of normal sun) for approximately 8 hr. During this period one-half of each test leaf was shaded; the other half was used as a normal sun control. Palisade cell structure from both halves of each leaf was compared. Shading of leaves had little effect on organelle percent volume values (Vv) with exception of the starch compartment which decreased as shading increased. The surface to volume ratio (Sv) of the chloroplast thylakoids increased while the Sv of the mitochondrial membranes decreased as shading increased. Palisade cell volume did not change in shaded portions of the leaf, except in the fully shaded (dark) tissues where cell volume decreased. Changes in the actual volume of organelle compartments were strongly correlated with changes in cell volume. Thus a general osmotic response may account for some of the volume changes associated with differences in light intensity. Shading increased thylakoid surface areas 10–30% over the full sun controls. The ratio of stromal to granal thylakoid surface area remained constant in both the control and partially shaded samples. However, in darkened samples this ratio decreased as stromal membranes increased more than granal membranes. Changes observed in thylakoid surface areas associated with shading did not support thylakoid models which propose the interconversion of granal membranes to stromal membranes and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号