共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yehudi Self-Medlin Jungsoo Byun Yoshiko Mizuno R. Preston Mason 《生物化学与生物物理学报:生物膜》2009,1788(6):1398-248
Oxidative damage to vascular cell membrane phospholipids causes physicochemical changes in membrane structure and lipid organization, contributing to atherogenesis. Oxidative stress combined with hyperglycemia has been shown to further increase the risk of vascular and metabolic diseases. In this study, the effects of glucose on oxidative stress-induced cholesterol domain formation were tested in model membranes containing polyunsaturated fatty acids and physiologic levels of cholesterol. Membrane structural changes, including cholesterol domain formation, were characterized by small angle X-ray scattering (SAXS) analysis and correlated with spectrophotometrically-determined lipid hydroperoxide levels. Glucose treatment resulted in a concentration-dependent increase in lipid hydroperoxide formation, which correlated with the formation of highly-ordered cholesterol crystalline domains (unit cell periodicity of 34 Å) as well as a decrease in overall membrane bilayer width. The effect of glucose on lipid peroxidation was further enhanced by increased levels of cholesterol. Treatment with free radical-scavenging agents inhibited the biochemical and structural effects of glucose, even at elevated cholesterol levels. These data demonstrate that glucose promotes changes in membrane organization, including cholesterol crystal formation, through lipid peroxidation. 相似文献
4.
5.
The non-equilibrium dynamic ordering process of coexisting phases has been studied for two-component lipid bilayers composed of saturated di-acyl phospholipids with different acyl chain lengths, such as DC14PC-DC18PC and DC12PC-DC18PC. By means of a microscopic interaction model and computer-simulation techniques the non-equilibrium properties of these two mixtures have been determined with particular attention paid to the effects of the non-equilibrium ordering process on membrane heterogeneity in terms of local and global lateral membrane organization. The results reveal that a sudden temperature change that takes the lipid mixture from the fluid one-phase region into the gel-fluid phase-coexistence region leads to the formation of a large number of small lipid domains which slowly are growing in time. The growth of the lipid domains, which is limited by long-range diffusion of the lipid molecules within the two-dimensional membrane plane, gives rise to the existence of a highly heterogeneous percolative-like structure with a network of interfacial regions that have properties different from those of the phase-separated gel and fluid bulk phases. The results, which are discussed in relation to recent experimental observations interpreted in terms of a percolative-like membrane structure within the two phase region (Almeida, P.F.F., Vaz, W.L.C., and T.E. Thompson. 1992. Biochemistry 31:7198-7210), suggest that non-equilibrium effects may influence lipid domain formation and membrane organization on various length and time scales. Such effects might be of importance in relation to membrane processes that require molecular mobility of the membrane components in restricted geometrical environments of the compartmentalized lipid membrane. 相似文献
6.
A non-ideal lipid binary mixture (dilauroylphosphatidylcholine/distearoylphosphatidylcholine), which exhibits gel/fluid phase coexistence for wide temperature and composition ranges, was studied using photophysical techniques, namely fluorescence anisotropy, lifetime and resonance energy transfer (FRET) measurements. The FRET donor, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dilauroylphosphatidylethanol amine, and a short-tailed FRET acceptor, 1,1'-didodecil-3,3,3',3'-tetramethylindocarbocyanine (DiIC12(3)), were shown to prefer the fluid phase by both intrinsic anisotropy, lifetime and FRET measurements, in agreement with published reports. The other studied FRET acceptor, long-tailed probe 1,1'-dioctadecil-3,3,3',3'-tetramethylindocarbocyanine (DiIC18(3)), is usually reported in the literature as partitioning mainly to the gel. While intrinsic lifetime studies indeed indicated preferential partition of DiIC18(3) into a rigidified environment, FRET analysis pointed to an increased donor-acceptor proximity as a consequence of phase separation. These apparently conflicting results were rationalized on the basis of segregation of DiIC18(3) to the gel/fluid interphase. In order to fluid-located donors sense these interphase-located acceptors, fluid domains should be small (not exceed approximately 10-15 nm). It is concluded that membrane probes which apparently prefer the gel phase may indeed show a non-random distribution in this medium, and tend to locate in an environment which simultaneously leads to less strict packing constraints and to favorable hydrophobic matching interactions. 相似文献
7.
Lipid compositions vary greatly among organelles, and specific sorting mechanisms are required to establish and maintain these distinct compositions. In this review, we discuss how the biophysical properties of the membrane bilayer and the chemistry of individual lipid molecules play a role in the intracellular trafficking of the lipids themselves, as well as influencing the trafficking of transmembrane proteins. The large diversity of lipid head groups and acyl chains lead to a variety of weak interactions, such as ionic and hydrogen bonding at the lipid/water interfacial region, hydrophobic interactions, and van-der-Waals interactions based on packing density. In simple model bilayers, these weak interactions can lead to large-scale phase separations, but in more complex mixtures, which mimic cell membranes, such phase separations are not observed. Nevertheless, there is growing evidence that domains (i.e., localized regions with non-random lipid compositions) exist in biological membranes, and it is likely that the formation of these domains are based on interactions similar to those that lead to phase separations in model systems. Sorting of lipids appears to be based in part on the inclusion or exclusion of certain types of lipids in vesicles or tubules as they bud from membrane organelles. 相似文献
8.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2020,1865(1):158447
Synaptotagmin-like mitochondrial-lipid-binding (SMP) domain proteins are evolutionarily conserved family of proteins in eukaryotes that localize between the endoplasmic reticulum (ER) and either the plasma membrane (PM) or other organelles. They are involved in tethering of these membrane contact sites through interaction with other proteins and membrane lipids. Recent structural and biochemical studies have demonstrated that SMP domain proteins transport a wide variety of lipid species by the ability of the SMP domain to harbor lipids through its unique hydrophobic cavity. Growing evidence suggests that SMP domain proteins play critical roles in cell physiology by their actions at membrane contact sites. In this review, we summarize the functions of SMP domain proteins and their direct roles in lipid transport across different membrane compartments. We also discuss their physiological functions in organisms as well as “bypass” pathways that act in parallel with SMP domain proteins at membrane contact sites. 相似文献
9.
A model recently used to study lipid-protein interactions in one-component lipid bilayers (Sperotto and Mouritsen, 1991 a, b) has been extended in order to include two different lipid species characterized by different acyl-chain lengths. The model, which is a statistical mechanical lattice model, assumes that hydrophobic matching between lipid-bilayer hydrophobic thickness and hydrophobic length of the integral protein is an important aspect of the interactions. By means of Monte Carlo simulation techniques, the lateral distribution of the two lipid species near the hydrophobic protein-lipid interface in the fluid phase of the bilayer has been derived. The results indicate that there is a very structured and heterogeneous distribution of the two lipid species near the protein and that the protein-lipid interface is enriched in one of the lipid species. Out of equilibrium, the concentration profiles of the two lipid species away from the protein interface are found to develop a long-range oscillatory behavior. Such dynamic membrane heterogeneity may be of relevance for determining the physical factors involved in lipid specificity of protein function. 相似文献
10.
11.
12.
The quenching efficiency of iodide as a penetrating fluorescence quencher for a membrane-associated fluorophore was utilized to measure the molecular packing of lipid bilayers. The KI quenching efficiency of tryptophan-fluorescence from melittin incorporated in DMPC bilayer vesicles peaks at the phase transition temperature (24 degrees C) of DMPC, whereas acrylamide quenching efficiency does not depend on temperature. The ability of iodide to penetrate the hydrocarbon region of the bilayer was examined by measuring the fluorescence quenching of the pyrene-phosphatidylcholine incorporated into DMPC vesicles (pyrene was attached to the 10th carbon of the sn-2 chain). The quenching efficiency of pyrene by iodide again shows a maximum at the lipid phase transition. We conclude that iodide penetrates the membrane hydrocarbon region at phase transition through an increased number of bilayer defects. The magnitude of change in quenching efficiency of iodide during lipid phase transition provides a sensitive technique to probe the lipid organization in membranes. 相似文献
13.
The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation 总被引:13,自引:0,他引:13
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells. 相似文献
14.
The object of this paper is to review briefly the studies on the interaction of red blood cell membrane skeletal proteins and their non-erythroid analogues with lipids in model systems as well as in natural membranes. An important question to be addressed is the physiological significance and possible regulatory molecular mechanisms in which these interactions are engaged. 相似文献
15.
In some cases, lipids in one leaflet of an asymmetric artificial lipid vesicle suppress the formation of ordered lipid domains (rafts) in the opposing leaflet. Whether this occurs in natural membranes is unknown. Here, we investigated this issue using plasma membrane vesicles (PMVs) from rat leukemia RBL-2H3 cells. Membrane domain formation and order was assessed by fluorescence resonance energy transfer and fluorescence anisotropy. We found that ordered domains in PMVs prepared from cells by N-ethyl maleimide (NEM) treatment formed up to ~37°C, whereas ordered domains in symmetric vesicles formed from the extracted PMV lipids were stable up to 55°C, indicating the stability of ordered domains was substantially decreased in intact PMVs. This behavior paralleled lesser ordered domain stability in artificial asymmetric lipid vesicles relative to the corresponding symmetric vesicles, suggesting intact PMVs exhibit some degree of lipid asymmetry. This was supported by phosphatidylserine mislocalization on PMV outer leaflets as judged by annexin binding, which indicated NEM-induced PMVs are much more asymmetric than PMVs formed by dithiothreitol/paraformaldehyde treatment. Destroying asymmetry by reconstitution of PMVs using detergent dilution also showed stabilization of domain formation, even though membrane proteins remained associated with reconstituted vesicles. Similar domain stabilization was observed in artificial asymmetric lipid vesicles after destroying asymmetry via detergent reconstitution. Proteinase K digestion of proteins had little effect on domain stability in NEM PMVs. We conclude that loss of PMV lipid asymmetry can induce ordered domain formation. The dynamic control of lipid asymmetry in cells may regulate domain formation in plasma membranes. 相似文献
16.
Lateral mobility of a lipid analog in the membrane of irreversible sickle erythrocytes 总被引:1,自引:0,他引:1
The major feature of sickle cell anemia is the tendency of erythrocytes to sickle when exposed to decreased oxygen tension and to unsickle when reoxygenated. Irreversible sickle cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation. ISCs are believed to owe their biophysical abnormalities to acquired membrane alterations which decrease membrane deformability. While increased membrane surface viscosity has been measured in ISCs, the lateral dynamics of membrane lipids in these cells have not heretofore been examined. We have measured the lateral diffusion of the lipid analog 3,3'-dioctadecylindocyanine iodide (DiI) in the plasma membrane of intact normal erythrocytes, reversible sickle cells (RSCs), and irreversible sickle cells by fluorescence photobleaching recovery (FPR). The diffusion coefficients +/- standard errors of the mean of DiI in intact normal red blood cells (RBCs), RSCs, and ISCs at 37 degrees C are (8.06 +/- 0.29) X 10(-9) cm2 X s-1, (7.74 +/- 0.22) X 10(-9) cm2 X s-1, and (7.29 +/- 0.24) X 10(-9) cm2 X s-1, respectively. A similar decrease in the diffusion coefficient of DiI in the plasma membranes of the three cell types was observed at 4, 10, 17, 23, and 30 degrees C. ANOVA analysis of the changes in DiI diffusion showed significant differences between the RBC and ISC membranes at all temperatures examined. The characteristic breaks in Arrhenius plots of the diffusion coefficients for the RBCs, RSCs, and ISCs occurred at 20, 19, and 18.6 degrees C, respectively. Photobleaching recovery data were used to estimate (Boullier, J.A., Melnykovich, G. and Barisas, B.G. (1982) Biochim. Biophys. Acta 692, 278-286) the microviscosities of the plasma membranes of the three cell types at 25 degrees C. We find significant differences between our microviscosity values and those obtained in previous fluorescence depolarization studies. However, both methods indicate qualitatively similar differences in membrane microviscosity among the various cell types. 相似文献
17.
Heerklotz H 《Biophysical journal》2002,83(5):2693-2701
Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds. 相似文献
18.
Recently, we have shown that association with an antimicrobial peptide (AMP) can drastically alter the diffusion behavior of the constituent lipids in model membranes (Biochemistry 49, 4672-4678). In particular, we found that the diffusion time of a tracer fluorescent lipid through a confocal volume measured via fluorescence correlation spectroscopy (FCS) is distributed over a wide range of time scales, indicating the formation of stable and/or transient membrane species that have different mobilities. A simple estimate, however, suggested that the slow diffusing species are too large to be attributed to AMP oligomers or pores that are tightly bound to a small number of lipids. Thus, we tentatively ascribed them to membrane domains and/or clusters that possess distinctively different diffusion properties. In order to further substantiate our previous conjecture, herein we study the diffusion behavior of the membrane-bound peptide molecules using the same AMPs and model membranes. Our results show, in contrast to our previous findings, that the diffusion times of the membrane-bound peptides exhibit a much narrower distribution that is more similar to that of the lipids in peptide-free membranes. Thus, taken together, these results indicate that while AMP molecules prompt domain formation in membranes, they are not tightly associated with the lipid domains thus formed. Instead, they are likely located at the boundary regions separating various domains and acting as mobile fences. 相似文献
19.
The fluorescent probe merocyanine 540, which binds preferentially to bilayers in which the lipids are loosely packed, was used to investigate changes in the organization of the lipids of the lymphocyte plasma membrane during primary and secondary lymphopoiesis. When mouse thymocytes were incubated with the dye, most immature cells stained, while most mature cells, about to enter the peripheral circulation, did not. Similarly, mature lymphocytes from both mouse and human peripheral blood did not stain, but these same cells did when activated by in vitro mitogenic stimulation. Freshly isolated splenic lymphocytes, presumably activated in vivo by antigen, also bound merocyanine 540, but after 48 hours of culture in the absence of stimulus they displayed only a low affinity for the dye, a phenotype that reverted to a high affinity upon mitogenic stimulation. These results suggest that changes in the organization of the lipids of the plasma membrane take place during lymphocyte differentiation: viz., immature cells possess a disordered membrane that becomes increasingly ordered as the cells mature and enter the peripheral circulation; then, upon antigen-induced differentiation, the plasma membrane again becomes disordered. These lipid organization changes are discussed in the context of their possible role in the regulation of lymphocyte circulation via intercellular interactions between lymphocytes and cells of the reticuloendothelial system. 相似文献
20.
The domain organization of the plant thylakoid membrane 总被引:2,自引:0,他引:2
A model of the photosynthetic membrane from higher plants is presented. The different photosystems, PSI alpha, PSI beta, PSII alpha and PSII beta, are located in separate domains. The photosystems with the largest antenna systems, the alpha systems, are in the grana and the other in the stroma lamellae. In each grana disc PSI alpha is located in a flat annulus surrounding a circular PSII alpha domain. In this the PSII alpha units with the largest antennae are found in the center. The model is consistent with results from recent membrane fractionation experiments. 相似文献