首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Serotonin-immunoreactive (5-HTi) neurons were mapped in the larval central nervous system (CNS) of the dipterous flies Calliphora erythrocephala and Sarcophaga bullata. Immunocytochemistry was performed on cryostat sections, paraffin sections, and on the entire CNS (whole mounts).The CNS of larvae displays 96–98 5-HTi cell bodies. The location of the cell bodies within the segmental cerebral and ventral ganglia is consistent among individuals. The pattern of immunoreactive fibers in tracts and within neuropil regions of the CNS was resolved in detail. Some 5-HTi neurons in the CNS possess axons that run through peripheral nerves (antenno-labro-frontal nerves).The suboesophagealand thoracico-abdominal ganglia of the adult blowflies were studied for a comparison with the larval ventral ganglia. In the thoracico-abdominal ganglia of adults the same number of 5-HTi cell bodies was found as in the larvae except in the metathoracic ganglion, which in the adult contains two cell bodies less than in the larva. The immunoreactive processes within the neuropil of the adult thoracico-abdominal ganglia form more elaborate patterns than those of the larvae, but the basic organization of major fiber tracts was similar in larval and adult ganglia. Some aspects of postembryonic development are discussed in relation to the transformation of the distribution of 5-HTi neurons and their processes into the adult pattern.  相似文献   

2.
Nervous system development in echinoderms has been well documented, especially for sea urchins and starfish. However, that of crinoids, the most basal group of extant echinoderms, has been poorly studied due to difficulties in obtaining their larvae. In this paper, we report nervous system development from two species of crinoids, from hatching to late doliolaria larvae in the sea lily Metacrinus rotundus and from hatching to cystidean stages after settlement in the feather star Oxycomanthus japonicus. The two species showed a similar larval nervous system pattern with an extensive anterior larval ganglion. The ganglion was similar to that in sea urchins which is generally regarded as derived. In contrast with other echinoderm and hemichordate larvae, synaptotagmin antibody 1E11 failed to reveal ciliary band nerve tracts. Basiepithelial nerve cells formed a net-like structure in the M. rotundus doliolaria larvae. In O. japonicus, the larval ganglion was still present 1 day after settlement when the adult nervous system began to appear inside the crown. Stalk nerves originated from the crown and extended down the stalk, but had no connections with the remaining larval ganglion at the base of the stalk. The larval nervous system was not incorporated into the adult nervous system, and the larval ganglion later disappeared. The aboral nerve center, the dominant nervous system in adult crinoids, was formed at the early cystidean stage, considerably earlier than previously suggested. Through comparisons with nervous system development in other ambulacraria, we suggest the possible nervous system development pattern of the echinoderm ancestor and provide new implications on the evolutionary history of echinoderm life cycles.  相似文献   

3.
The fruitfly Drosophila melanogaster is one of the most appropriate model organisms to study the genetics of behaviour. Here, we focus on prospero (pros), a key gene for the development of the nervous system which specifies multiple aspects from the early formation of the embryonic central nervous system to the formation of larval and adult sensory organs. We studied the effects on locomotion, courtship and mating behaviour of three mild pros mutations. These newly isolated pros mutations were induced after the incomplete excision of a transposable genomic element that, before excision, caused a lethal phenotype during larval development. Strikingly, these mutant strains, but not the strains with a clean excision, produced a high frequency of heterozygous flies, after more than 50 generations in the lab. We investigated the factors that could decrease the fitness of homozygotes relatively to heterozygous pros mutant flies. Flies of both genotypes had slightly different levels of fertility. More strikingly, homozygous mutant males had a lower sexual activity than heterozygous males and failed to mate in a competitive situation. No similar effect was detected in mutant females. These findings suggest that mild mutations in pros did not alter vital functions during development but drastically changed adult male behaviour and reproductive fitness.  相似文献   

4.
Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR) to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stable fly, Stomoxys calcitrans, using an immunohistological technique. The location and pattern of the 5-HT IR neurons are described and compared for these two different developmental stages. Anatomical features of the fly feeding system were analyzed in third instar larvae and adult flies using a combination of histological and immunohistological techniques. In third instar larvae, the cibarial dilator muscles were observed within the cibarial pump skeleton and innervated by 5-HT IR neurons in nerves arising from the brain. There were four pairs of nerves arising from the frontal surface of the larval brain that innervate the cibarial pump muscles, pharynx, and muscles controlling the mouth hooks. A strong serotoninergic innervation of the anterior stomatogastric system was observed, which suggests 5-HT may play a role in the coordination of different phases of food ingestion by larvae. Similarly, many 5-HT IR neurons were found in both the brain and the thoracico-abdominal ganglia in the adult, some of which innervate the cibarial pump dilator muscles and the stomatogastric muscles. This is tnhe first report describing neuromuscular structures of the stable fly feeding system. The results reported here suggest 5-HT may play a critical role in feeding behaviors of stable fly larvae and adults.  相似文献   

5.
We examined the expression of acetylcholinesterase (AChE) in the nervous system and epidermal body structures during embryonic and larval development of two grasshopper species: Locusta migratoria and Schistocerca americana. Histochemical labelling was blocked by the enzyme inhibitors eserine and BW284c51, but not by iso-OMPA, showing that the staining reflected true AChE activity. The majority of staining was localized on the cell surface but granular intracellular staining was also visible in many cell bodies. In both species, the cellular expression of AChE followed a similar but complex spatiotemporal staining pattern. Initially, mainly epidermal tissue structures were stained in the various body appendages (stages 25%–30%). Labelling subsequently appeared in outgrowing neurons of the central nervous system (CNS) and in the nerves innervating the limbs and dorsal body wall (stages 30%–40%). The latter staining originated in motoneurons of the ventral nerve cord. In a third phase (after 45%), the somata of certain identified mechanosensory neurons started to express AChE activity, presumably reflecting cholinergic differentiation. Staining was also found in repo-positive glial cells of the CNS, longitudinal glia of connectives, glia of the stomatogastric nervous system and glial cells ensheathing peripheral nerves. Glial cells remained AChE-positive during larval to adult development, whereas motoneurons lost their AChE expression. The expression pattern in non-neuronal cells and glutamatergic motoneurons and the developmental appearance of AChE prior to synaptogenesis in the CNS suggest non-cholinergic functions of AChE during grasshopper embryogenesis. Financial support was provided by the Deutsche Forschungsgemeinschaft (Bi 262/7-1 and 262/11-1)  相似文献   

6.
The nervous system development of the sea cucumber Stichopus japonicus was investigated to explore the development of the bilateral larval nervous system into the pentaradial adult form typical of echinoderms. The first nerve cells were detected in the apical region of epidermis in the late gastrula. In the auricularia larvae, nerve tracts were seen along the ciliary band. There was a pair of bilateral apical ganglia consisted of serotonergic nerve cells lined along the ciliary bands. During the transition to the doliolaria larvae, the nerve tracts rearranged together with the ciliary bands, but they were not segmented and remained continuous. The doliolaria larvae possessed nerves along the ciliary rings but strongly retained the features of auricularia larvae nerve pattern. The adult nervous system began to develop inside the doliolaria larvae before the larval nervous system disappears. None of the larval nervous system was observed to be incorporated into the adult nervous system with immunohistochemistry. Since S. japonicus are known to possess an ancestral mode of development for echinoderms, these results suggest that the larval nervous system and the adult nervous system were probably formed independently in the last common ancestor of echinoderms.  相似文献   

7.
We investigated the morphology of the central nervous system throughout the larval development ofCarcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.  相似文献   

8.
Histamine is known to be the neurotransmitter of insect photoreceptors. Histamine-like immunoreactivity is also found in a number of interneurons in the central nervous system of various insects. Here, we demonstrate by immunohistochemical techniques that, in Drosophila melanogaster (Acalypterae), most or all mechanosensory neurons of imaginal hair sensilla selectively bind antibodies directed against histamine. The histamine-like staining includes the cell bodies of these neurons as well as their axons, which form prominent fibre bundles in peripheral nerves, and their terminal projections in the central neuropil of head and thoracic ganglia. The specificity of the immunostaining is demonstrated by investigating a Drosophila mutant unable to synthesize histamine. Other mechanosensory organs, such as campaniform sensilla or scolopidial organs, do not stain. In the calypteran flies, Musca and Calliphora, we find no comparable immunoreactivity associated with either hair sensilla or the nerves entering the central nervous system, observations in agreement with earlier studies on Calliphora. Thus, histamine seems to be a major mechanosensory transmitter candidate of the adult nervous system of Drosophila, but apparently not of Musca or Calliphora.  相似文献   

9.
10.
Wang K  Guo Y  Wang F  Wang Z 《PloS one》2011,6(11):e25890
The Drosophila melanogaster TRPA family member painless, expressed in a subset of multidendritic neurons embeding in the larval epidermis, is necessary for larval nociception of noxious heat or mechanical stimuli. However, the function of painless in adult flies remains largely unknown. Here we report that mutation of painless leads to a defect in male-male courtship behavior and alteration in olfaction sensitivity in adult flies. Specific downregulation of the expression of the Painless protein in the olfactory projection neurons (PNs) of the antennal lobes (ALs) resulted in a phenotype resembling that found in painless mutant flies, whereas overexpression of Painless in PNs of painless mutant males suppressed male-male courtship behavior. The downregulation of Painless exclusively during adulthood also resulted in male-male courtship behavior. In addition, mutation of the painless gene in flies caused changes in olfaction, suggesting a role for this gene in olfactory processing. These results indicate that functions of painless in the adult central nervous system of Drosophila include modulation of olfactory processing and inhibition of male-male courtship behavior.  相似文献   

11.
We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.  相似文献   

12.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including stimulation of pheromone biosynthesis in female moths, stimulation of muscle contraction, induction of embryonic diapause in Bombyx mori, and stimulation of melanization in some larval moths. Recently, this family of peptides has been implicated in accelerating the formation of the puparium in a dipteran. Using bioassay and immunocytochemical techniques, we demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Pheromonotropic activity was shown in the moths Helicoverpa zeaand Helicoverpa armigera by using dissected larval nervous systems and adult heads and bodies of D. melanogaster. Polyclonal antisera against the C-terminal ending of PBAN revealed the location of cell bodies and axons in the central nervous systems of larval and adult flies. Immunoreactive material was detected in at least three groups of neurons in the subesophageal ganglion of 3rd instar larvae, pupae, and adults. The ring gland of both larvae and adults contained immunoreactivity. Adult brain-subesophageal ganglion complex possessed additional neurons. The fused ventral ganglia of both larvae and adults contained three pairs of neurons that sent their axons to a neurohemal organ connected to the abdominal nervous system. These results indicate that the D. melanogasternervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph.  相似文献   

13.
The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons.  相似文献   

14.
15.
S. Datta  D. R. Kankel 《Genetics》1992,130(3):523-537
Adult optic lobes of Drosophila melanogaster are composed of neurons specific to the adult which develop postembryonically. The structure of the optic lobes and aspects of its development have been described, and a number of mutants that affect its development have been identified. The focus of every screen to date has been on disruption of adult structure or function. Although these loci were originally identified on the basis of viable mutants, some have proven capable of giving rise to lethal alleles. It seems reasonable to assume that mutants which strongly affect development of the imaginal-specific central nervous system may evidence abnormalities during the late larval or pupal stages when the adult central nervous system is undergoing final assembly and might show a lethal phase prior to eclosion (as is true for mutations at the previously defined l(1)ogre locus). We have carried out the first screen of autosomal and sex-linked late larval and pupal lethals to identify mutations that affect the development of the optic lobes. Our screen yielded nine mutants that could tentatively be grouped into three classes, depending on the neuroblast population affected and imaginal disc phenotypes. Two of these, including one that is allelic to l(1)zw1, were chosen for further analysis.  相似文献   

16.
Cyclic nucleotide-stimulable protein kinase (EC 1.7.1.37) has been studied in crude extracts from the central nervous system of the tobacco hornworm Manduca sexta (Lepidoptera: Sphingidae). The insect kinase was fulfhydryl-sensitive and required Mg-2+ for optimal activity. Polyacrylamide gel electrophoresis of supernatants demonstrated the presence of multiple kinases in the larval nerve cord. At low concentrations, cyclic AMP was a much more potent activator of soluble and particulate activities than was cyclic GMP. The specific activity of coluble kinase and the magnitude of its activations by cyclic AMP were greater in the adult than in the larval central nervous system. The exogenous protein substrate specificity of the insect enzyme was similar to that of rat brain kinase with the sole exception that protamine was more readily phosphorylated than histone by nerve cord kinase. It was observed that cyclic AMP lowered the Km of Manduca sexta kinase for ATP, a phenomenon which is apparently nervous tissue=specific in mammals. An effective inhibitor of cyclic AMP-dependent protein kinase was prepared from the larval central nervous system.  相似文献   

17.
Dopamine (DA) is the only catecholaminergic neurotransmitter in the fruit fly Drosophila melanogaster. Dopaminergic neurons have been identified in the larval and adult central nervous system (CNS) in Drosophila and other insects, but no specific genetic tool was available to study their development, function, and degeneration in vivo. In Drosophila as in vertebrates, the rate-limiting step in DA biosynthesis is catalyzed by the enzyme tyrosine hydroxylase (TH). The Drosophila TH gene (DTH) is specifically expressed in all dopaminergic cells and the corresponding mutant, pale (ple), is embryonic lethal. We have performed ple rescue experiments with modified DTH transgenes. Our results indicate that partially redundant regulatory elements located in DTH introns are required for proper expression of this gene in the CNS. Based on this study, we generated a GAL4 driver transgene, TH-GAL4, containing regulatory sequences from the DTH 5' flanking and downstream coding regions. TH-GAL4 specifically expresses in dopaminergic cells in embryos, larval CNS, and adult brain when introduced into the Drosophila genome. As a first application of this driver, we observed that in vivo inhibition of DA release induces a striking hyperexcitability behavior in adult flies. We propose that TH-GAL4 will be useful for studies of the role of DA in behavior and disease models in Drosophila.  相似文献   

18.
The locus elav (ella-vee) of Drosophila melanogaster, which is necessary for the proper development of the embryonic and adult nervous systems, has been characterized both genetically and molecularly. This locus has been shown to be transcribed exclusively within, and ubiquitously throughout, the developing nervous system during Hours 6 to 12 of embryogenesis. We present in situ RNA localization data which demonstrate that elav is expressed in the central nervous system as well as the peripheral nervous system of embryos, larvae, pupae, and adults. We also demonstrate that elav is not transcribed in embryonic or larval neuroblasts (the neuronal progenitor cells), or in at least one type of glial cell. These data provide evidence that the requirement for elav function is not limited to the 6- to 12-hr embryonic nervous system and the adult eye and developing optic lobe, but that its function is required for the development and continued maintenance of all neurons of the organism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号