首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic operon for propionic acid degradation in Salmonella enterica serovar Typhimurium contains an open reading frame designated prpE which encodes a propionyl coenzyme A (propionyl-CoA) synthetase (A. R. Horswill and J. C. Escalante-Semerena, Microbiology 145:1381-1388, 1999). In this paper we report the cloning of prpE by PCR, its overexpression in Escherichia coli, and the substrate specificity of the enzyme. When propionate was utilized as the substrate for PrpE, a K(m) of 50 microM and a specific activity of 120 micromol. min(-1). mg(-1) were found at the saturating substrate concentration. PrpE also activated acetate, 3-hydroxypropionate (3HP), and butyrate to their corresponding coenzyme A esters but did so much less efficiently than propionate. When prpE was coexpressed with the polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha in recombinant E. coli, a PHA copolymer containing 3HP units accumulated when 3HP was supplied with the growth medium. To compare the utility of acyl-CoA synthetases to that of an acyl-CoA transferase for PHA production, PHA-producing recombinant strains were constructed to coexpress the PHA biosynthetic genes with prpE, with acoE (an acetyl-CoA synthetase gene from R. eutropha [H. Priefert and A. Steinbüchel, J. Bacteriol. 174:6590-6599, 1992]), or with orfZ (an acetyl-CoA:4-hydroxybutyrate-CoA transferase gene from Clostridium propionicum [H. E. Valentin, S. Reiser, and K. J. Gruys, Biotechnol. Bioeng. 67:291-299, 2000]). Of the three enzymes, PrpE and OrfZ enabled similar levels of 3HP incorporation into PHA, whereas AcoE was significantly less effective in this capacity.  相似文献   

2.
3.
The pathway of the oxidation of propionate to pyruvate in Escherichia coli involves five enzymes, only two of which, methylcitrate synthase and 2-methylisocitrate lyase, have been thoroughly characterized. Here we report that the isomerization of (2S,3S)-methylcitrate to (2R,3S)-2-methylisocitrate requires a novel enzyme, methylcitrate dehydratase (PrpD), and the well-known enzyme, aconitase (AcnB), of the tricarboxylic acid cycle. AcnB was purified as 2-methylaconitate hydratase from E. coli cells grown on propionate and identified by its N-terminus. The enzyme has an apparent Km of 210 micro m for (2R,3S)-2-methylisocitrate but shows no activity with (2S,3S)-methylcitrate. On the other hand, PrpD is specific for (2S,3S)-methylcitrate (Km = 440 micro m) and catalyses in addition only the hydration of cis-aconitate at a rate that is five times lower. The product of the dehydration of enzymatically synthesized (2S,3S)-methylcitrate was designated cis-2-methylaconitate because of its ability to form a cyclic anhydride at low pH. Hence, PrpD catalyses an unusual syn elimination, whereas the addition of water to cis-2-methylaconitate occurs in the usual anti manner. The different stereochemistries of the elimination and addition of water may be the reason for the requirement for the novel methylcitrate dehydratase (PrpD), the sequence of which seems not to be related to any other enzyme of known function. Northern-blot experiments showed expression of acnB under all conditions tested, whereas the RNA of enzymes of the prp operon (PrpE, a propionyl-CoA synthetase, and PrpD) was exclusively present during growth on propionate. 2D gel electrophoresis showed the production of all proteins encoded by the prp operon during growth on propionate as sole carbon and energy source, except PrpE, which seems to be replaced by acetyl-CoA synthetase. This is in good agreement with investigations on Salmonella enterica LT2, in which disruption of the prpE gene showed no visible phenotype.  相似文献   

4.
Reversible protein acetylation is a ubiquitous means for the rapid control of diverse cellular processes. Acetyltransferase enzymes transfer the acetyl group from acetyl-CoA to lysine residues, while deacetylase enzymes catalyze removal of the acetyl group by hydrolysis or by an NAD(+)-dependent reaction. Propionyl-coenzyme A (CoA), like acetyl-CoA, is a high energy product of fatty acid metabolism and is produced through a similar chemical reaction. Because acetyl-CoA is the donor molecule for protein acetylation, we investigated whether proteins can be propionylated in vivo, using propionyl-CoA as the donor molecule. We report that the Salmonella enterica propionyl-CoA synthetase enzyme PrpE is propionylated in vivo at lysine 592; propionylation inactivates PrpE. The propionyl-lysine modification is introduced by bacterial Gcn-5-related N-acetyltransferase enzymes and can be removed by bacterial and human Sir2 enzymes (sirtuins). Like the sirtuin deacetylation reaction, sirtuin-catalyzed depropionylation is NAD(+)-dependent and produces a byproduct, O-propionyl ADP-ribose, analogous to the O-acetyl ADP-ribose sirtuin product of deacetylation. Only a subset of the human sirtuins with deacetylase activity could also depropionylate substrate. The regulation of cellular propionyl-CoA by propionylation of PrpE parallels regulation of acetyl-CoA by acetylation of acetyl-CoA synthetase and raises the possibility that propionylation may serve as a regulatory modification in higher organisms.  相似文献   

5.
We previously identified the prpBCDE operon, which encodes catabolic functions required for propionate catabolism in Salmonella typhimurium. Results from (13)C-labeling experiments have identified the route of propionate breakdown and determined the biochemical role of each Prp enzyme in this pathway. The identification of catabolites accumulating in wild-type and mutant strains was consistent with propionate breakdown through the 2-methylcitric acid cycle. Our experiments demonstrate that the alpha-carbon of propionate is oxidized to yield pyruvate. The reactions are catalyzed by propionyl coenzyme A (propionyl-CoA) synthetase (PrpE), 2-methylcitrate synthase (PrpC), 2-methylcitrate dehydratase (probably PrpD), 2-methylisocitrate hydratase (probably PrpD), and 2-methylisocitrate lyase (PrpB). In support of this conclusion, the PrpC enzyme was purified to homogeneity and shown to have 2-methylcitrate synthase activity in vitro. (1)H nuclear magnetic resonance spectroscopy and negative-ion electrospray ionization mass spectrometry identified 2-methylcitrate as the product of the PrpC reaction. Although PrpC could use acetyl-CoA as a substrate to synthesize citrate, kinetic analysis demonstrated that propionyl-CoA is the preferred substrate.  相似文献   

6.
A strain of Escherichia coli was metabolically engineered to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) of specified composition between 5% and 18% HV. A gene encoding propionyl-CoA synthetase (prpE from S. enterica) was placed under the control of the IPTG-inducible tac promoter (P(taclacUV5)) while the polyhydroxyalkanoate synthesis operon (phaBCA) from R. eutropha was expressed constitutively. A strain of E. coli harboring both plasmids was grown in defined medium and PHBV was produced with specified hydroxyvalerate (HV) molar content between 5% and 18%. The molecular weight of the copolymer was approximately 700,000 across various HV contents, and average polydispersity was approximately 1.3. The majority of the PHBV production occurred during the late exponential/stationary phase. The HV content of the copolymer generally peaked early in the incubation before falling to its final value. We found that the time profiles of PrpE activity, propionyl-CoA, and acetyl-CoA were well correlated to the HV content time profile. Despite an abundance of propionyl-CoA, incorporation of HV into the copolymer was inefficient. Therefore, both the PHA operon and conditions affecting the availability of propionyl-CoA must be chosen carefully to achieve the desired HV content. The ability to engineer copolymer composition control into an E. coli strain would be useful in cases where the feedstock composition is not adjustable.  相似文献   

7.
Salmonella enterica serovar Typhimurium LT2 catabolizes propionate through the 2-methylcitric acid cycle, but the identity of the enzymes catalyzing the conversion of 2-methylcitrate into 2-methylisocitrate is unclear. This work shows that the prpD gene of the prpBCDE operon of this bacterium encodes a protein with 2-methylcitrate dehydratase enzyme activity. Homogeneous PrpD enzyme did not contain an iron-sulfur center, displayed no requirements for metal cations or reducing agents for activity, and did not catalyze the hydration of 2-methyl-cis-aconitate to 2-methylisocitrate. It was concluded that the gene encoding the 2-methyl-cis-aconitate hydratase enzyme is encoded outside the prpBCDE operon. Computer analysis of bacterial genome databases identified the presence of orthologues of the acnA gene (encodes aconitase A) in a number of putative prp operons. Homogeneous AcnA protein of S. enterica had strong aconitase activity and catalyzed the hydration of the 2-methyl-cis-aconitate to yield 2-methylisocitrate. The purification of this enzyme allows the complete reconstitution of the 2-methylcitric acid cycle in vitro using homogeneous preparations of the PrpE, PrpC, PrpD, AcnA, and PrpB enzymes. However, inactivation of the acnA gene did not block growth of S. enterica on propionate as carbon and energy source. The existence of a redundant aconitase activity (encoded by acnB) was postulated to be responsible for the lack of a phenotype in acnA mutant strains. Consistent with this hypothesis, homogeneous AcnB protein of S. enterica also had strong aconitase activity and catalyzed the conversion of 2-methyl-cis-aconitate into 2-methylisocitrate. To address the involvement of AcnB in propionate catabolism, an acnA and acnB double mutant was constructed, and this mutant strain cannot grow on propionate even when supplemented with glutamate. The phenotype of this double mutant indicates that the aconitase enzymes are required for the 2-methylcitric acid cycle during propionate catabolism.  相似文献   

8.
Salmonella enterica serovar Typhimurium LT2 showed increased sensitivity to propionate when the 2-methylcitric acid cycle was blocked. A derivative of a prpC mutant (which lacked 2-methylcitrate synthase activity) resistant to propionate was isolated, and the mutation responsible for the newly acquired resistance to propionate was mapped to the citrate synthase (gltA) gene. These results suggested that citrate synthase activity was the source of the increased sensitivity to propionate observed in the absence of the 2-methylcitric acid cycle. DNA sequencing of the wild-type and mutant gltA alleles revealed that the ATG start codon of the wild-type gene was converted to the rare GTG start codon in the revertant strain. This result suggested that lower levels of this enzyme were present in the mutant. Consistent with this change, cell-free extracts of the propionate-resistant strain contained 12-fold less citrate synthase activity. This was interpreted to mean that, in the wild-type strain, high levels of citrate synthase activity were the source of a toxic metabolite. In vitro experiments performed with homogeneous citrate synthase enzyme indicated that this enzyme was capable of synthesizing 2-methylcitrate from propionyl-CoA and oxaloacetate. This result lent further support to the in vivo data, which suggested that citrate synthase was the source of a toxic metabolite.  相似文献   

9.
1. Crude extracts of seeds of Pinus radiata catalysed acetate-, propionate-, n-butyrate- and n-valerate-dependent PP(i)-ATP exchange in the presence of MgCl(2), which was apparently due to a single enzyme. Propionate was the preferred substrate. Crude extracts did not catalyse medium-chain or long-chain fatty acid-dependent exchange. 2. Ungerminated dry seeds contained short-chain fatty acyl-CoA synthetase activity. The activity per seed was approximately constant for 11 days after imbibition and then declined. The enzyme was located only in the female gametophyte tissue. 3. The synthetase was purified 70-fold. 4. Some properties of the enzyme were studied by [(32)P]PP(i)-ATP exchange. K(m) values for acetate, propionate, n-butyrate and n-valerate were 4.7, 0.21, 0.33 and 2.1mm respectively. Competition experiments between acetate and propionate demonstrated that only one enzyme was involved and confirmed that the affinity of the enzyme for propionate was greater than that for acetate. CoA inhibited fatty acid-dependent PP(i)-ATP exchange. The enzyme catalysed fatty acid-dependent [(32)P]PP(i)-dATP exchange. 5. The enzyme also catalysed the fatty acyl-AMP-dependent synthesis of [(32)P]ATP from [(32)P]PP(i). Apparent K(m) (acetyl-AMP) and apparent K(m) (propionyl-AMP) were 57mum and 7.5mum respectively. The reaction was inhibited by AMP and CoA. 6. Purified enzyme catalysed the synthesis of acetyl-CoA and propionyl-CoA. Apparent K(m) (acetate) and apparent K(m) (propionate) were 16mm and 7.5mm respectively. The rate of formation of acetyl-CoA was enhanced by pyrophosphatase. 7. It was concluded that fatty acyl adenylates are intermediates in the formation of the corresponding fatty acyl-CoA.  相似文献   

10.
The metabolic engineering of epothilones, as secondary metabolites, was investigated using Sorangium cellulosum to achieve the selective production of epothilone B, a potent anticancer agent. Thus, the propionyl-CoA synthetase gene (prpE) from Ralstonia solanacearum was heterologously expressed in S. cellulosum to increase the production of epothilone B. Propionyl-CoA synthetase converts propionate into propionyl-CoA, a potent precursor of epothilone B. The recombinant S. cellulosum containing the prpE gene exhibited a significant increase in the resolution of epothilones B/A, with an epothilone B to A ratio of 127 to 1, which was 100 times higher than that of the wild-type cells, demonstrating its potential use for the selective production of epothilone B.  相似文献   

11.
Mechanisms of growth inhibition by propionate on the growth of Rhodopseudomonas sphaeroides were studied. Partially purified pyruvate dehydrogenase complex (PDC) from R. sphaeroides was inhibited by propionyl-CoA, one of the metabolic intermediates of propionate, while propionate itself did not inhibit the enzyme. This suggests that the inhibitor of the growth in vivo is not propionate but propionyl-CoA. The inhibition by propionyl-CoA was competitive with respect to coenzyme A concentration. The K1 value for propionyl-CoA was 0.84 mM. Addition of NaHCO3, which restored the growth of this bacterium in the presence of propionate, increased the rate of propionate incorporation by 1.7-fold and decreased the intracellular level of propionyl-CoA by half. These findings suggest that HCO3-ion lowers the level of propionyl-CoA by accelerating its carboxylation reaction, which is catalyzed by propionyl-CoA carboxylase. Effects of NaHCO3 and acetate on the growth restoration were also studied by the use of propionyl-CoA carboxylase-deficient mutants. NaHCO3 did not restore the growth of the mutants, indicating an essential role of propionyl-CoA carboxylase on the restoration of growth by NaHCO3 as suggested above. Addition of acetate restores the growth of the mutants in the presence of propionate. Acetate probably restores the growth by supplying acetyl-CoA.  相似文献   

12.
A recombinant strain of Salmonella enterica serovar Typhimurium (mutant in propionate-activation activity) was metabolically engineered to control the composition of poly(3-hydroxybutyrate-co-3-hydroxy- valerate) (PHBV), a polyhydroxyalkanoate copolymer with commercially desirable properties. A gene (prpE) encoding propionyl-CoA synthetase was placed under the control of the IPTG-inducible taclacUV5 promoter (P(taclacUV5)) while the polyhydroxyalkanoate synthesis operon (phaBCA) from Acinetobacter sp. RA3849 was coexpressed under the control of the arabinose-inducible araBAD promoter (P(BAD)). S. enterica, harboring both constructs, was grown in medium containing a fixed substrate concentration and the composition of the copolymer was varied between 2 mol% and 25 mol% 3-hydroxyvalerate by controlling the IPTG level in the medium. This "dial-a-composition" system should find application in cases where the substrate concentration of a feedstream for PHBV bioplastic production is not adjustable.  相似文献   

13.
Rajashekhara E  Watanabe K 《FEBS letters》2004,556(1-3):143-147
Propionyl-coenzyme A synthetases (PrpE) of Salmonella choleraesuis and Ralstonia solanacearum sharing 62% identity in amino acid sequence to each other were cloned, expressed in Escherichia coli and purified. Both enzymes catalyzed acetyl-, propionyl-, butyryl- and acrylyl-coenzyme A formation with the highest k(cat)/K(m) values for propionate. They displayed sigmoidal homotrophic autoactivation kinetics for propionate but not for the other acyl substrates tested. Besides, substrate inhibition kinetics was observed for co-substrates, i.e. ATP and CoA. Based on the kinetic data reported herein, the reaction mechanisms of the enzyme are discussed.  相似文献   

14.
xapABR from Salmonella enterica was analyzed and compared with the corresponding Escherichia coli genes. xapB and xapR, but not xapA, encode functional proteins. An S. enterica XapA(Asp72Gly) mutant that restores the phosphorolytic activity was selected. The purified mutant enzyme has different kinetic constants than the E. coli enzyme but similar substrate specificity.  相似文献   

15.
In Salmonella enterica serovar Typhimurium, purine nucleotides and thiamine are synthesized by a branched pathway. The last known common intermediate, aminoimidazole ribonucleotide (AIR), is formed from formylglycinamidine ribonucleotide (FGAM) and ATP by AIR synthetase, encoded by the purI gene in S. enterica. Reduced flux through the first five steps of de novo purine synthesis results in a requirement for purines but not necessarily thiamine. To examine the relationship between the purine and thiamine biosynthetic pathways, purI mutants were made (J. L. Zilles and D. M. Downs, Genetics 143:37-44, 1996). Unexpectedly, some mutant purI alleles (R35C/E57G and K31N/A50G/L218R) allowed growth on minimal medium but resulted in thiamine auxotrophy when exogenous purines were supplied. To explain the biochemical basis for this phenotype, the R35C/E57G mutant PurI protein was purified and characterized kinetically. The K(m) of the mutant enzyme for FGAM was unchanged relative to the wild-type enzyme, but the V(max) was decreased 2.5-fold. The K(m) for ATP of the mutant enzyme was 13-fold increased. Genetic analysis determined that reduced flux through the purine pathway prevented PurI activity in the mutant strain, and purR null mutations suppressed this defect. The data are consistent with the hypothesis that an increased FGAM concentration has the ability to compensate for the lower affinity of the mutant PurI protein for ATP.  相似文献   

16.
The Escherichia coli XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the Dickeya dadantii 3937 2-ketobutyrate oxidase or the E. coli pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the Ralstonia eutropha propionyl-CoA synthetase (PrpE) or the E. coli acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the E. coli tdcE gene or the Clostridium difficile pflB gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-co-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant E. coli XL1-blue strain equipped with citramalate pathway expressing the E. coli poxB L253F V380A gene and R. eutropha prpE gene together with the R. eutropha PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-co-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-co-3HV) could be increased up to 5.5 mol% by additional deletion of the prpC and scpC genes, which are responsible for the metabolism of propionyl-CoA in host strains.  相似文献   

17.
Methylcitrate synthase is a key enzyme of the methylcitrate cycle and required for fungal propionate degradation. Propionate not only serves as a carbon source, but also acts as a food preservative (E280-283) and possesses a negative effect on polyketide synthesis. To investigate propionate metabolism from the opportunistic human pathogenic fungus Aspergillus fumigatus, methylcitrate synthase was purified to homogeneity and characterized. The purified enzyme displayed both, citrate and methylcitrate synthase activity and showed similar characteristics to the corresponding enzyme from Aspergillus nidulans. The coding region of the A. fumigatus enzyme was identified and a deletion strain was constructed for phenotypic analysis. The deletion resulted in an inability to grow on propionate as the sole carbon source. A strong reduction of growth rate and spore colour formation on media containing both, glucose and propionate was observed, which was coincident with an accumulation of propionyl-CoA. Similarly, the use of valine, isoleucine and methionine as nitrogen sources, which yield propionyl-CoA upon degradation, inhibited growth and polyketide production. These effects are due to a direct inhibition of the pyruvate dehydrogenase complex and blockage of polyketide synthesis by propionyl-CoA. The surface of conidia was studied by electron scanning microscopy and revealed a correlation between spore colour and ornamentation of the conidial surface. In addition, a methylcitrate synthase deletion led to an attenuation of virulence, when tested in an insect infection model and attenuation was even more pronounced, when whitish conidia from glucose/propionate medium were applied. Therefore, an impact of methylcitrate synthase in the infection process is discussed.  相似文献   

18.
Aspergillus nidulans was used as a model organism to investigate the fungal propionate metabolism and the mechanism of growth inhibition by propionate. The fungus is able to grow slowly on propionate as sole carbon and energy source. Propionate is oxidized to pyruvate via the methylcitrate cycle. The key enzyme methylcitrate synthase was purified and the corresponding gene mcsA, which contains two introns, was cloned, sequenced and overexpressed in A. nidulans. The derived amino acid sequence of the enzyme shows more than 50% identity to those of most eukaryotic citrate synthases, but only 14% identity to the sequence of the recently detected bacterial methylcitrate synthase from Escherichia coli. A mcsA deletion strain was unable to grow on propionate. The inhibitory growth effect of propionate on glucose medium was enhanced in this strain, which led to the assumption that trapping of the available CoA as propionyl-CoA and/or the accumulating propionyl-CoA itself interferes with other biosynthetic pathways such as fatty acid and polyketide syntheses. In the wild-type strain, however, the predominant inhibitor may be methylcitrate. Propionate (100 mM) not only impaired hyphal growth of A. nidulans but also synthesis of the green polyketide-derived pigment of the conidia, whereas in the mutant pigmentation was abolished with 20 mM propionate.  相似文献   

19.
Aims: This paper utilized quantitative LC‐MS/MS to profile the short‐chain acyl‐CoA levels of several strains of Escherichia coli engineered for heterologous polyketide production. To further compare and potentially expand the levels of available acyl‐CoA molecules, a propionyl‐CoA synthetase gene from Ralstonia solanacearum (prpERS) was synthesized and expressed in the engineered strain BAP1. Methods and Results: Upon feeding propionate, the engineered E. coli strains had increased the levels of both propionyl‐ and methylmalonyl‐CoA of 6‐ to 30‐fold and 3·7‐ to 6·8‐fold, respectively. Expression of prpE‐RS resulted in no significant increases in acetyl‐, butyryl‐ and propionyl‐CoA when fed the corresponding substrates (sodium acetate, butyrate or propionate). More interesting, however, were the results from strain BAP1 engineered for native prpE overexpression, which indicated increases in the same range of acyl‐CoA formation. Conclusions: The increased acyl‐CoA levels across the strains profiled in this study reflect the genetic modifications implemented for improved polyketide production and also indicate flexibility of the native PrpE. Significance and Impact of the Study: The results provide direct evidence of enhanced acyl‐CoA levels correlating to those strains engineered for polyketide biosynthesis. This information and the inherent flexibility of the native PrpE enzyme support future efforts to characterize, engineer and extend acyl‐CoA precursor supply for additional heterologous biosynthetic attempts.  相似文献   

20.
SIR2 proteins have NAD(+)-dependent histone deacetylase activity, but no metabolic role has been assigned to any of these proteins. In Salmonella enterica, SIR2 function was required for activity of the acetyl-CoA synthetase (Acs) enzyme. A greater than two orders of magnitude increase in the specific activity of Acs enzyme synthesized by a sirtuin-deficient strain was measured after treatment with homogeneous S. enterica SIR2 protein. Human SIR2A and yeast SIR2 proteins restored growth of SIR2-deficient S. enterica on acetate and propionate, suggesting that eukaryotic cells may also use SIR2 proteins to control the synthesis of acetyl-CoA by the level of acetylation of acetyl-CoA synthetases. Consistent with this idea, growth of a quintuple sir2 hst1 hst2 hst3 hst4 mutant strain of the yeast Saccharomyces cerevisiae on acetate or propionate was severely impaired. The data suggest that the Hst3 and Hst4 proteins are the most important for allowing growth on these short-chain fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号